
COVENTRY UNIVERSITY
Faculty of Engineering and Computing

REAL TIME CHARACTER ANIMATION:
A GENERIC APPROACH TO RAGDOLL

PHYSICS

Author Mark Watkinson

Student ID 1518461

Course Title MSc Computer Science

Module M29CDE

Date 23/09/2009

MSc Projects/Dissertations

Declaration of Originality

This project is all my own work and has not been copied in part or in whole from any
other source except where duly acknowledged. As such, all use of previously
published work (from books, journals, magazines, internet etc.) has been
acknowledged within the main report to an item in the References or Bibliography
lists.

I also agree that an electronic copy of this project may be stored and used for the
purposes of plagiarism prevention and detection.

Copyright Acknowledgement

I acknowledge that the copyright of this project report, and any product developed as
part of the project, belong to Coventry University.

Signed: Date:

Office Stamp

Abstract

Ragdoll physics represents an increasingly common method to increase players'
perceived interaction with 3D computer games (and other virtual worlds) by providing
dynamic character response to physical impacts. Traditionally a character would not
'recover' from entering a ragdoll physics mode, consequently ragdoll was only useful
for creating character death animations. Combining dynamic character physics
simulation with pre-defined sources of animation (keyframe/motion capture) is a
current area of research.

Most games that use ragdoll physics use an implementation specific to their game
engine, and generic approaches do not exist. This project aimed to investigate and
implement the concept of applying ragdoll physics in a very abstract, generic
manner, and to synthesise new animation by combining ragdoll simulation with a pre-
defined animation data source.

The system implemented employed skeletal retargeting, using a generic ragdoll
skeleton structure to abstract the problem of ragdoll physics. The ragdoll skeleton
was simulated using a constrained particle dynamics approach to rigid body
dynamics, and used a Verlet-Velocity integration system. The concept of a 'target'
ragdoll skeleton constructed from pure pre-defined animation data is used to allow a
character's motion to be derived from both ragdoll and pre-defined sources, giving
the result of allowing the character to believably recover from ragdoll effects. The
ragdoll system is also used as the basis of an inverse kinematics solver.

The method and system presented shows strong results in ragdoll/pre-defined
animation synthesis, as well as inverse kinematics, and further provides an effective
(but inconvenient) method for applying a single ragdoll simulator to diverse models
through retargeting. However, due to time constraints it was unclear whether the
ragdoll method is sufficient in itself for generally realistic ragdoll effects.

i

Table of Contents
1 Introduction..1
2 Literature Review, Previous Work, and Current Standards.......................................3

2.1 Character Animation Standards...3
2.2 Pre-defined Animation..5
2.3 Ragdoll Physics..6

3 Problem Description and Requirements..12
4 Approach..14

4.1 Analysis of requirements..14
4.2 Open Asset Import Library..15
4.3 Project, Time Management, And Methodology..16

5 Software Design...18
6 Keyframe System..20

6.1 Keyframe Blending...20
7 Ragdoll System..24

7.1 Approach 1...24
7.1.1 Initial Creation Of Skeleton...25
7.1.2 Forces...27
7.1.3 Distance Constraints...28
7.1.4 Results And Discussion...29

7.1.4.1 Model Quirks..30
7.1.4.2 Synchronisation of the model and skeleton.......................................31
7.1.4.3 Performance..32

7.1.5 Conclusions of Approach 1...32
7.2 Approach 2...33

7.2.1 Derivation Of Orientation...34
7.2.2 Nodes..35
7.2.3 Retargeting..36

7.2.3.1 Forwards Retargeting..37
7.2.3.2 Backwards Retargeting..40

7.2.4 Collision detection...42
7.2.4.1 Self Collision..42
7.2.4.2 Environment Collision..42

7.2.5 Ragdoll/Keyframe Blending..43
7.2.6 Inverse Kinematics..44
7.2.7 Other Considerations..46

8 Miscellaneous Library Details..47
9 Conclusions and Evaluation..48

9.1 Discussion Of The Keyframe System...48
9.2 Discussion of the Ragdoll System..48

9.2.1 Particle System...48
9.2.2 Inverse Kinematics..51
9.2.3 Powered Ragdoll...53

9.3 Future Work..54
9.4 Satisfaction of Requirements...55
9.5 Performance...57

ii

9.6 Appropriateness of Methods...58
10 References...60
Appendix 1 Software notes...63
Appendix 2 UML Class Diagrams...64

Appendix 2.1 Full Library..64
Appendix 2.2 Ragdoll System Class Layout..65
Appendix 2.3 IK System class layout...66

Appendix 3 Model To Ragdoll Skeleton Retargeting Examples.................................67
Appendix 4 Ragdoll Approach 1 Further Results...69
Appendix 5 Ragdoll Blending Examples...70
Appendix 6 IK Examples...71
Appendix 7 Example Code Listings..72

Appendix 7.1 Animator Object Creation...72
Appendix 7.2 Example frame-by-frame interaction..73
Appendix 7.3 IK Example Code listing...74

Appendix 8 Turnitin Report...75

iii

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

1 Introduction

A significant part of the immersion a virtual world provides is through its inhabitants.
The characters who exist within the world are expected by the player/user to appear
real and believable, and their movements, their animation, is a large part of
achieving this goal. Traditionally, real time animation was entirely pre-recorded then
played back as the character moved through the world. The animation did not drive
the movement; the animation and the movement were merely synchronised to
appear that they were the same.

With the recent, rapid increase in the hardware resources available to the average
computer game, animation began to include real time simulation of character model
movement in the form of ragdoll physics; ragdoll gives another approach to
animation in that it allows a character model to become limp and respond to impacts
accordingly. Contrary to traditional pre-defined animation, within ragdoll physics, the
character's movement through the world is inseparable from its animation. Invocation
of ragdoll typically meant a character had died and was now a lifeless body that
could be manipulated by application of impacts (through whatever mechanism the
game allowed). Recently, the concept of merging ragdoll effects into an animation
cycle has been a growing area of research; the idea of which is to provide a dynamic
reaction to a smaller (i.e. non-fatal) impact/effect: to use the ragdoll simulation to
provide a response then blend the character model's resultant position back into the
original motion capture animation. This technique is relatively new and is not (yet)
commonplace within games.

Implementations for ragdoll physics are often integrated into game engines in such a
way that they are difficult to re-use across different applications. Whilst standalone
animation engines and physics engines exist, standalone engines that handle
physics-based animation are either very rare or non-existent, despite the fact that
many modern games now incorporate ragdoll physics. Such a library would have
definite value.

All of the areas necessary for simulating in-game physics are well established,
having been applied in physics and engineering fields long before their inclusion into
computer games. The specific method of simulation outlined in this project is
borrowed from particle dynamics, and its application to ragdoll was originally
presented in Hitman2 (IOInteractive 2002).

Synthesising new animation from existing animation has always been a difficult
problem, but potentially a very rewarding one to solve. By combining existing
animation data to form new animation routines, animation synthesis potentially
provides a much richer database than would otherwise be obtainable of animations
that the game can use. In doing so, synthesis allows creation a more believable
world for the player. Effective synthesis of new motions allows fewer resources to be

1

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

allocated to creation of animation data during an application's development1 and
those resources can thus be spent elsewhere.

This project implements an animation library to allow ragdoll physics and blending
between ragdoll and keyframe animation sources. The methods used are suitable for
use on an arbitrary humanoid bipedal input model. In this report are detailed the
methods underlying the library's implementation. The library implements a standard
keyframe animation library and an entirely separate ragdoll simulation library, the
latter forming the bulk of the work.

In this report it is shown that ragdoll is a difficult problem to solve in a truly abstract
sense as there exist many caveats which relate to character models' potential
individual properties, but by using skeletal retargeting techniques to create a
'standard' ragdoll skeleton, many of the individual considerations can be removed at
the ragdoll level. Combination of the two data sources is addressed and solved
within the ragdoll system at the level of the ragdoll skeleton by making use of a
second skeleton, which represents the library's pure keyframe state (i.e. the
character model in its keyframe position, translated to an equivalently posed ragdoll
skeleton). At this simplified level, merging of the two skeletons becomes almost trivial
and due to skeleton constraints that enforce the skeleton remain humanly shaped,
this method of blending offers greater realism than simpler animation blending
techniques.

The ragdoll skeleton is shown to be surprisingly versatile in that it forms a natural
basis for an inverse kinematics solver. Its appropriateness as an IK solver is
explored, and exploited to provide another method of motion synthesis.

1 Given that there are so many combinations and permutations of animations (i.e. “idle”, “walk”,
“run”) and sequences (i.e. “idle to walk”, “walk to run”), and as these have to be recorded
individually, creation of a full animation database is potentially very expensive: costs involve 3D
modelling, and actors for motion capture.

2

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

2 Literature Review, Previous Work, and Current
Standards

2.1 Character Animation Standards

Before evaluating the more advanced areas with which this report is concerned, a
brief discussion of standard approaches to real time animation at a basic level is
provided.

Real-time animation is a well studied concept and has been included (to some
degree) in almost every competitor game of the past ten to fifteen years. The work
flow to include character models and animation within an application became
standard:

1. A modeller creates a model within a 3D modelling package (e.g: 3DS Max,
Blender, Maya).

2. Animation data is associated with the model, either by defining the animation
within the modelling package, or by using motion capture. The animation data
is stored within the model's files.

3. The model (and its animation) is exported to a file format1, on disk.
4. The application (game) imports the model by parsing its file, and stores it

within memory for the runtime of the duration of the application's runtime

3D character models are usually represented as a tree structure2 with each node
having associated with it a transformation matrix. 3x3 rotation matrices are a well
known property of linear algebra, but in 3D graphics it is also common to introduce a
fourth dimension (homogeneous co-ordinates) and use 4x4 matrices for such
transformations, as these can also contain scaling and translation properties
(Rotenberg 2005). This matrix orients the node in 3D space relative to its parent
node (as defined in the tree). This is so called 'local-space', which makes keeping
the different nodes of the model attached to each other much easier to enforce; a
transformation of any node may easily be inherited by its children (so a movement at
the shoulder automatically results in the upper-arm, lower-arm and hand being
moved along with it). (flipcode.com 1998)

1 There exist many, many file format specifications for storing models. Each format holds roughly the
same data, but encoded differently. This means that step 4's parsing will be written specifically for
the format the application expects to use, and importing models in other formats will not be
possible without writing extra importers.

2 The tree uses a node for each limb in the model, the hierarchy is defined by joints e.g. the hand is
a child-node of the forearm, which is a child of the upper arm, etc. Counter intuitively, the most
useful position for a root node ends up being around the waist.

3

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Typically the matrices will be such that traversing the tree and at each node
combining (multiplying in the case of standard rotation matrices) the current node's
local orientation with the parent node's global orientation will yield the current node's
global orientation1: this is its location in the game's world space.

For heavily detailed animation targeted to a relatively small area, such as facial
animation, a different technique called Morphing is often used (Evangelista 2008),
but that is not the focus of this project.

Individually, the matrices' scaling and translation can be represented as 3D vectors
(or 4D in homogeneous coordinates, but the 4th element is simply set to the value
'1'). Rotational components are most obviously represented by a set of Euler angles
representing rotations in each respective axis. However, instead, rotational data is
often encoded as a unit quaternion, i.e. a four-dimensional number [w, x, y, z],
representing a co-ordinate in a real dimension (w) and three imaginary dimensions
(x, y, z) (Wesstein “Quaternion” 2009). Quaternions are an extension to complex
numbers and so inherit some arithmetic properties from standard two-dimensional
complex arithmetic, meaning that there are fewer necessary operations in computing
successive rotations by a sequence of quaternion multiplications than by the
equivalent matrix multiplications.

Euler angles are affected by Gimbal Lock, a loss of a degree of freedom resulting
from a rotation in which a rotation in one axis places two axes pointing in the same
direction (Fjeld 2006), however, as quaternions exist in four dimensions they do not

1 This is self evident, as multiplying successive transformation matrices will make the transformation
effect stack up

4

Figure 1: The effect on the upper body of a single rotation at the waist node. Note
that only the waist node has been altered.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

suffer from this problem. Quaternions exhibit smooth interpolations, contrary to Euler
angles which often do not yield perfectly smooth results when interpolated (Martin
1999).

Animation data exists in two important forms, pre-defined and procedural.

2.2 Pre-defined Animation

Pre-defined animation is currently the most common method for handling animation.
The animation data for any particular animation is encoded as a sequence of
transformation properties (scaling, rotation, translation) for each node in a sequence
of time-steps. This works similarly to a recording, as it is then played back. The
application then determines for any animation being played back the correct (time)
index of sequence at each frame (a relative time that describes the current position
in the animation sequence. When the end of the sequence is reached, the relative
time will usually 'wrap-around', i.e. begin again at zero). The relative time will often
lie between two indices in the sequence, so the transformation at that particular time
will need to be calculated rather than purely read. The appropriate transformation is
determined by interpolation between the previous and the next index's
transformation properties (Adams 2003). This results in frame rate independent
playback speed. This is a space/time trade-off, saving storage and memory
requirements by forcing the CPU to approximate the in-between values. Vector
components are usually interpolated with simple linear interpolation (i.e. the path
from the first vector to the second is represented as a parametrised line such that
when the distance parameter is iteratively increased the points along the line are
traced out incrementally),

Interpolation between rotations is done using slightly different methods, one such
method is Spherical Linear Interpolation (SLERP), a method in which the quantity
being interpolated is moved along the surface of a sphere so that its distance from
the origin remains constant (Shoemake 1985).

SLERP is somewhat controversial, having spawned its own discussion on “when not
to use it” (Blow 2004). The argument Blow makes is that SLERP may be too slow for
use in real time game systems, but he does not provide any analysis that supports
his supposition that a 'real' system would spend so much time calling a SLERP
routine that it would make a measurable difference. A common alternative to SLERP
is Normalised Quaternion Linear Interpolation (NLERP). A comparison is given in
(Tremethick 2006), in which it is shown that NLERP is slightly less accurate but not
noticeably so. It is also shown that to be faster to compute, but whether it is
measurably faster is not addressed.

5

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

It is possible to blend together multiple animations to combine them and play them
back together. For example, blending a 'running', animation with a 'shooting'
animation would make the character appear to be performing both actions
simultaneously. This is achieved by averaging the transformations derived from
multiple animation sources (Adams 2003). This works very well when applied to
relatively similar animations, but it is self evident that blending a “lying down”
animation with a “run” animation obviously would not give pleasing results (the
character would appear at a 45 degree angle).

Predefined animation can be created either by an artist using a modelling package,
or by motion capture; the origin of the data is not important in terms of playing it
back.

Procedural animation (and procedural creation of other game assets, too) is a
relatively new concept compared to pre-defined animation. The idea concerns itself
with algorithmically generating animation rather than relying only on pre-defined
sequences. An important area of procedural animation, on which this project
focusses, is ragdoll physics.

2.3 Ragdoll Physics

In this section the word 'body' typically refers to a rigid body (typically a single node
in a skeleton), and the terms “articulated body”, “skeleton”, and “model” are roughly
interchangeable, referring to something that visually represents a character.

Implementing physics simulation (or instead creating illusions of physics simulation)
within games is not a new area, having been described in depth from a very practical
point of view at least as early as 1996 (Hecker 1996), and similar ideas were
explored from a more academic point of view by Hahn (1988). The articles describe
the mathematical simulation of Newtonian physics within real-time applications,
using simple numerical methods to solve the sets of differential equations that arise
from Newtonian dynamics, so as to model the movement of a body as a force is
applied to it. The articles also describe areas such as angular effects and collision
detection of bodies. At the time these were written, the authors (so the writing
implies) intended their methods to be applied to lifeless objects within the game
world to create an environment that to some degree reacts to in-world events. An
interesting development of recent years is the application of these methods to
character animation to allow for dynamically generated death animations (more
commonly known as 'ragdoll physics').

Ragdoll physics tends to fall into two categories: rigid body dynamics (as given in
Hecker (1996)) and particle dynamics. These are not dissimilar, and in fact the
particle dynamics approach uses its particles to model rigid bodies; but it is
convenient to draw a distinction between particle and non-particle approaches as the
internal details of the two systems are conceptually separate.

6

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Hennix et al (2003) describe a rigid body approach to ragdoll physics using many of
the ideas (Hecker 1996) introduces to create an articulated body. The idea presented
is the modelling of a ragdoll as a set of linked boxes (each acting as a rigid body,
representing a limb/node). The bodies are free to move, but exert a force upon each
other at their joints, so by moving any body, the bodies to which it is joined are pulled
as a result. The methods described by Hecker (1996) and Hahn (1988) are
employed on each body and their joints to create a set of linked bodies that behave
like a limp human. This system shows a physically accurate approach to simulating
ragdoll physics. It likely produces more accurate results than less rigorous physics
approaches, however, the computational cost of evaluating the ragdoll and its joints
is likely higher as a result.

Within this system a non-trivial joint constraint system is employed; the exact system
is described by Smith (2004); a constraint is expressed as a linear system of
equations where individual elements can easily be scaled or 'zeroed' out.

Hennix et all (2003) also describe collision detection, which is a necessary
component of a ragdoll physics simulation. Objects within computer graphics cannot
literally 'collide' so the application has to be able to determine when two objects
intersect, and make them react accordingly. Hennix et al (2003) outline collision
detection as two processes; a 'broad' and 'narrow' phase. The first phase seeks to
determine which objects are close enough that they may potentially collide with each
other, and the second determines whether they actually do. Collision detection is a
difficult problem to solve computationally as there are potentially many objects and a
computer cannot determine which are intersecting without running some test(s) on
each of them with respect to every other object, which results in super-polynomial
complexity growth in terms of the number of objects being tested. The 'broad' phase
quickly excludes the majority of other objects from having to be subjected to more
expensive collision detection (i.e. explicit intersection tests). Reacting to collisions is
another area covered by Hecker (1996) although in the context of ragdoll physics,
reaction needs only to be minimal as characters do not usually need to visibly
bounce as a result of a collision.

In contrast to the physically rigorous approach is that presented by Jakobson (2001),
which solves the problem in a simplified and more imaginative manner.
Jakobson describes a particle system which is used to construct an articulated body.
From a high level, this method consists of a set of particles held together by distance
constraints. Each node within a skeleton is described by two particles (points in
space), forming a line. At each time-step, forces are applied individually to each
node, causing them to move independently of one another. To retain its articulated
structure the particle system is subject to a number of constraints which are enforced
as much as possible at the end of each iteration of the simulation. The constraints
are solely distance constraints (i.e. two points must be the a set distance from each
other) and come in three forms (although the last two are equivalent in that within a
skeleton, for each example of 2) there exists an example of 3)):

7

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

1. Distance of the start of a node to the end of the node
2. Distance of the start of a node to the end of its parent
3. Distance of the end of a node to the start of its child

Thus, upon moving any point, an process is started whereby the points to which it is
attached are affected and pulled by the movement in order to satisfy the constraint.
This is repeated along the 'chain' of linked nodes.

A convenient side effect of this method is that rotations of nodes do not need to be
handled explicitly by the physics simulation, because they arise implicitly. Applying a
force equally to all particles within a node will result in a translation, but for realism a
force's effect on the particles would be weighted to reflect the exact position of the
force's application. In this case, the translation of each particle will be different and
the node therefore rotates.

The process of applying angular movement is far more involved than linear
movement, from both an implementation and computation point of view, so the
avoidance of explicit rotation handling puts this system in a very favourable light. It is
an obvious supposition that since the angular movement in this system is a side
effect of applying the forces, that it is probably not as accurate or realistic as
handling it explicitly as in Hecker (1996) or Hahn (1988). Conversely, it is worth
considering that human joints are not 'smooth', they have damping forces from
friction and more importantly from basic anatomical restrictions. Simulating this in full
from a strict physics viewpoint would be a difficult problem and would require a lot of
artificial tweaking to perfect; consequently the accuracy benefit of the strict physics
approach may not be as great as it first appears.

Furthermore, the only calculations necessary to affect the system itself are
translations in space (on each particle), which are simply three additions and
therefore can be evaluated very fast. The speed of execution is evidenced by Brown
(2009) who details a recent successful creation of a ragdoll physics engine using
Jakobson's approach, the performance of which was suitable for a portable console,
the Nintendo DS.

The advantages of this system lie in its simplicity to implement and its speed
resulting from this simplicity.

The disadvantages however are significant: Jakobson describes a method for
collision detection based on making sure nodes do not come too close to each other,
and making sure legs do not cross, and similar. This is a very naive approach and, to
quote Rosen (2007), it "addresses the symptoms rather than the problems".
However, the system as is given does not provide much support for anything more
robust.
The second problem is that by representing each node as a line, it is impossible for
the system itself to provide any meaningful data about the node's rotation about the

8

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

axis going through itself from top to bottom (for example, it cannot represent turning
one's head from left to right). Whether this really is a problem or not is unclear: with
the exception of the neck/head, a body rotating about itself is a very subtle
transformation and would probably not be missed. In the case of the head, this
rotation could probably be applied afterwards, as a special case, outside of the
particle system.

An important but seemingly extremely overlooked contribution is presented by Rosen
(2007). Rosen builds directly on Jakobson's method, adding some extra
considerations that address the inherent problems. Rosen argues that Jakobson's
approach can be extended in a conceptually simple manner to give each node in the
system easily derivable orientation data by building nodes out of triangles instead of
lines; from a triangle an orthonormal basis that describes the node's rotation can be
derived.

The constraints between the shapes that make up a node are enforced as distance
constraints; each point in the triangle, for example, has two constraints to enforce the
shape of the triangle, as well as any constraints connecting the particle to other
nodes (i.e. the particle will have extra constraints if it is forming a joint between
multiple nodes).

Rosen extends this by using multiple points of a node to create different joint types,
an idea mentioned by Jakobson. By themselves, these joints can act as either
hinges (2 particles per joint) or ball joints (one particle) dependent upon the number
of points on each node which have a connection to the other node. This goes some
way to address angular constraints between nodes. The orientation between two
nodes is derivable from comparison between their individual orientations (accessible
from the orthonormal basis), and he posits that this provides the possibility to apply
more specific constraints, as Euler angles.

In the 'further work' section of his paper, Rosen suggests that this system could be
extended to handle balance by approximating the centre of balance of the character
from its foot positions, and comparing that to a centre of mass (which could be
approximated automatically but would make more sense to be arbitrarily defined as
being located somewhere in the upper body of a character), and then when the
model becomes unbalanced to try to return it to the angular joint rotations of some
known balanced position.

This system provides a number of improvements over Jakobson's while retaining
many of the advantages of simplicity. The disadvantages are that firstly some of the
performance benefit of Jakobson is lost in evaluating a much greater number of
constraints arising from the node shapes, and secondly, by treating an articulated
body as a set of linked two dimensional shapes it still by itself does not provide a
good basis for a collision detection system; a model lying on the floor for example
would have its skeleton lying directly on the floor plane, but half of its actual rendered

9

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

vertices would likely clip below this plane. Rosen notes that the collision detection
system could be improved by wrapping hit-boxes1 around the nodes.

In augmentation to a ragdoll system, there is also a growing area of active research
in trying to combine the pre-defined animation with dynamic response provided by a
ragdoll simulation.

An attempt at merging traditional pre-defined animation data and real time ragdoll
physics simulation was undertaken by (Park 2008). Unfortunately the project was a
failure in the sense that it did not yield any direct success and does not provide much
information of its overall approach, so it is difficult to ascertain from it exactly what
did not work, however, it is still worth some consideration as it states the conclusion
that any combination of these two data sources is a very involved process requiring
a deceptively complicated system capable of scheduling events and representing a
lot of data about the whole body. The lesson it teaches is that such a problem should
not be approached lightly; rigorous physical simulation is necessary, and so is a
strong underlying software system.

A more rigorous and more successful attempt at combination of the two data sources
was given by Zordan et al (2005), who used the idea of having the simulation 'follow'
data from the pre-defined animation source to smoothly move between different
animations. Each node in the skeleton is given a motor controller which has
knowledge of the node's current position and of a target position (each node having
the usual 6 degrees of freedom); the motor is then responsible for trying to move the
node into the target position. No type of joint constraints are built into the controller
they describe but such constraints could be built in elsewhere in the overall system
and evaluated and enforced after each time-step of a simulation. Between an initial
and target position that are of short (translational and rotational) distance, Zordon et
al's approach yields visually pleasing results, however, to handle movement between
contrasting poses such as standing and sitting it proves insufficient and results in
unrealistic artefacts.

A similar approach to that described by Zordon et al (2005) is presented by Wroteck
et al (2006) in the Dynamo system, which uses the same concepts to create dynamic
animation response to environmental events. They assert that most similar methods
have not been overly successful due to attempting to apply the necessary
combinations of pre-defined and simulation data to the transformations of each
node's local space. By using world space instead, they claim to have had more
success, and have reduced a lot of the implausibilities that otherwise arise. They
provide little information on the implementation of their underlying ragdoll system but
mention that it is a rigid body stiff spring system, so is presumably roughly equivalent

1 A box that encloses a node on a character model. The box is used for collision detection, in that it
serves as a structure which which it is relatively easy to test for intersection – it is much easier to
test if something has intersected with a box, than with all of the polygons that make up the node in
the model.

10

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

to that described by Hennix et al (2003). From a high level, each node is 'powered'
and its resistance to simulated change is inversely proportional to its power.

They combine data from the simulation with data from the keyframe/motion capture
data to try to allow realistic responses to dynamic events that occur to the
characters. The combination is not a simple blending; when the character is
undergoing dynamic processing, a rotational force is applied to the character's nodes
to try to make it gravitate towards the target orientation (given by the motion capture
data). The speed at which the limbs move towards their targets is controlled by a
motor, similarly to Zordon et al's approach (2005), the force exerted by which can be
altered easily and can be instantly reduced and then quickly increased to its full
value in order to simulate effects such as being stunned. This (the stunning effect)
appears to be a method by which their system controls the precedence between
ragdoll and pre-defined animation data, so that the resultant animation can focus
more on one than the other when necessary.

It also includes a balance system. The balance is determined by the root node's
'power', which basically represents a resistance to the character becoming limp and
falling over. Although it is not detailed how the Dynamo system computes balance, it
can be inferred that such a system would have to consider the positions of the feet of
a character relative to its centre of mass.

11

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

3 Problem Description and Requirements

The aim of this project is to design and implement a generic approach to including
ragdoll physics into real-time applications, which will also contain the ability to
combine ragdoll physics with a pre-defined animation source. The main deliverables
of this project are a specification of a method to achieve this, and a software
implementation of the method.

Of importance to the method is generality: the method should be able to act on a
wide variety of character models: some restrictions may be necessary, but a model
that is unsuitable should be a special case with some unusual property, rather than
requiring that a suitable model is a special case of character model in that it is
specifically tailored for the method. Furthermore, the method should be as
automated as possible although some user intervention will inevitably be necessary.

The blending method (between a ragdoll physics source and pre-defined animation
source) should be such that the character can dynamically react to impacts, and then
revert to its pre-defined animation cycle in a believable fashion.

The software should be a useful system in its own right, by which is meant, the
software itself should be suitable for inclusion into applications in which ragdoll
effects are desired. Therefore, the software shall be in the form of a fully functional
animation library.

The library should implement both ragdoll physics and pre-defined animation
playback.

There is no obvious reason that an animation library should have special software
dependencies, and so should be written using portable code such that it is suitable
for use on a wide number of environments (operating systems/platforms). This is
especially of interest because the library's most likely user is a developer of a low-
budget application (a more commercially oriented development team would likely
prefer stronger supported solutions), for example an Open Source game (which are
usually written by hobbyists who do not have the same affinity towards Microsoft
Windows that is displayed by commercial games).

The library should be suitable for inclusion into a project via dynamic linking,
meaning that it should provide in its public API all the necessary methods to for an
external application to use the library to perform the generic ragdoll method. Any
reasonable usage of the library (i.e. usage defined within its requirements) which
requires direct access to, or modification of, the source code would make it an
unacceptable solution.

12

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

The library's target users are real time 3D graphics applications (primarily games)
developers. To make the library a usable system, a full API documentation is
required as well as example code illustrating usage of the library's basic constructs.

The project will also require a simple demonstration program to be written to show
that the library is working.

13

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

4 Approach

4.1 Analysis of requirements

The requirements specify that a generic, portable library shall be written. This leads
to an important implementation decision of choosing the most suitable programming
language for the task.

The subset of sensible language choices for most application and library
programming can safely be restricted to C, C++, C# and Java.

Advantages Disadvantages Portability Familiarity

C Strong, high
performance
language

Not object oriented
very small standard
library
Memory leaks
possible due to no
automatic garbage-
collection

Very high if
written
conforming to
standards

Very High

C++ Inherits C's
advantages,
Supports OO
Much larger standard
library

Memory leaks
possible due to no
automatic garbage-
collection

Very high if
written
conforming to
standards

None

C# Supports OO
Huge library support

Tends to be slower
than C/C++

Microsoft Only
(with weak unix-
support from
MONO (mono-
project.com
2009)

Low

Java Supports OO
Huge library support
Very cross-platform

Difficult to compile
native library code;
would be hard to
use from a non-
Java program (and
Java is not a
common choice in
games
programming)

High across PCs
(Windows/Mac/
Unix-like)

Moderate

14

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Performance comparison data provided by Bruckschlegel (2005)

Although it loses dramatically with respect to prior familiarity, C++ was chosen as the
best tool for implementing this project. C++ is a super-set of C, thus making
familiarity less of a consideration. C++ is a well established standard in games
programming, making it the ideal choice as it means other C++ applications will
easily be able to use its interface. The performance gains from the fact C++ is
compiled to native code are also significant. C++'s standard library is not as
extensive as C#'s or Java's but is sufficient. C++ provides cross-platform access, the
GCC compiler alone can target systems as diverse as Windows/Linux through to
Sony's Playstation (playstation2-linux.com 2009).

GCC (G++) was used as the main compiler throughout. Valgrind and the GNU
Profiler were also used throughout the project. Valgrind provides memory safety
analysis and memory leak detection (valgrind.org 2009), and gprof provides
performance profiling, identifying bottlenecks1 (Osier 2009).

The decision was made to avoid any third party dependencies to try to retain
portability, with the exception of the Open Asset Import Library
(Assimp.sourceforge.net 2009).

4.2 Open Asset Import Library

The Open Asset Import Library (ASSIMP) is a generic model importer. It is provided
freely under a BSD license (which is very permissive and if the situation ever
dictated would legally allow any needed code to be copied and pasted directly into
this project, and secondly, a compiled version could be redistributed freely). ASSIMP
requires one C++ dependency, Boost, but claims to be very cross platform, in which
case ASSIMP's dependency does not undermine the portability goal of this library.
ASSIMP provides two things of importance:

1) A generalised model importer that serves as an abstraction layer to model file
formats and the data they contain (Figure 2). This removes from the library
the task of parsing file formats, and gives data obtained from models of a
number of different file formats in such a way that it can always be relied upon
to be in the same form. A standard in-memory model format is a necessity of a
generic ragdoll approach.

2) A number of linear algebra primitive data structures, such as vectors,
matrices, and some of their associated mathematical operators and
functionality.

1 When bottlenecks are referred to within this report, their existence or position is not the result of
speculation but instead a result of profiling data given by gprof.

15

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

The caveat of using ASSIMP is that ASSIMP is still in beta and contains some
instabilities, however it is assumed these will be fixed in future. During early usage,
all of the instabilities that were encountered were related to model loading, and could
be avoided by avoiding certain file formats. In short, ASSIMP is worth the risk of
using because it provides functionality useful to solving the problem. Of this
functionality, a non-trivial subset would need to be implemented from scratch in
ASSIMP's (or an equivalent library's) absence.

4.3 Project, Time Management, And Methodology

The project lifetime was approximately three and a half months, lasting from
15/06/09 to 23/09/09 (although the deadline was extended from 11/09/09), or 14 full
weeks. The first four weeks were spent engaging purely in research. The final four
weeks were allocated to bringing together the whole project, and to writing this
report.

This left around 6 to 7 weeks for the design and implementation phase of the project.

16

Figure 2: Workflow for using the Open Asset Import Library.
It acts as an abstraction interface to the model formats as
encoded on disk. An animation library would typically be
encapsulated within the Game Engine.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Due to having no prior familiarity with computer animation, the initial research phase
initially covered animation from very basic principles. This then progressed to
learning to use the Open Asset Library (and in doing so, becoming familiar with C+
+), and then into researching into physics/rigid body simulation. Within this period,
some time was also spent practically experimenting using short programs written
using Python1.

The 6 to 7 weeks design and implementation time is quite short for a project of this
size. Furthermore, given no previous familiarity with the whole topic area there was
the considerable risk of making large oversights in the design process, or spending
too much time pursuing dead-end approaches. This is to say that there was a risk of
losing time as a result of making mistakes that a more experienced animation
programmer might regard as being obvious.

For this reason, a prototyping based methodology, evolutionary prototyping, was
used for the software side of the project. Prototyping is often used to quickly identify
misunderstandings between developers and end users (Sommerville 2004), but the
fast results it gives also provide the possibility to quickly highlight developers'
misunderstandings of their own approach and algorithms. Evolutionary prototyping
makes continual refinements to the software rather than (as in traditional throw-away
prototyping) discarding and rewriting it when a working prototype is found; which is
the optimal use of time in a relatively short project. The major risk of such an
approach is that code is likely to become bloated and unmaintainable and might
need rewriting once a working prototype is found, but the fact that flaws are revealed
quickly and in such a fashion that they are anticipated to exist makes this a useful
methodology for this project given the circumstances.

The software was designed from a high level with appropriate abstraction interfaces,
so that any problems that were revealed would hopefully be isolated to their
individual modules (classes), but lower level details were not considered during
design as they would be best seen as from the point of view of implementation as
they arose. A low level design risked predicting details with results that may be a
product of accumulative oversights elsewhere in the design. The design is outlined
below, in 5 – Software Design.

1 Python chosen because
1) It is a scripting language with high level constructs: it is very fast to write code for, focussing
more on the solving the problem than on implementing the solution.
2) It has extensive mathematics library support in NumPy (numpy.scipy.org 2009).
3) Its functional-style list (array) operations make using vectors and matrices easy.

17

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

5 Software Design

This section describes briefly from a high level the overall software infrastructure that
was employed to solve the problem. This section is intended only to give an
understanding of how the software is structured; exact details on the functionality
and behaviour given here is provided in the next sections (6 – Keyframe System, 7 –
Ragdoll System and 7.2.6 – Inverse Kinematics). Some data structures (those
prefixed by ai) are provided by the Open Asset Library, these include the skeleton
nodes (given in a hierarchical tree-like linked list), matrices and vectors, and
animation data. Because of time constraints these are used indiscriminately within
the library with no wrapping or abstraction around them. The Open Asset library uses
a right handed co-ordinate system, and quaternions to represent pure orientations.
These are also used throughout the animation library.

The software is divided into three major sections, the Animator, KeyframeController
(KFC) and RagdollController (RDC) class; these are abstractions and make the
sections agnostic to the implementation of each other. Later in implementation was
also introduced the InverseKinematicsSolver (IKS) class, which can be thought of as
roughly equivalent1 to KFC and RDC .

The Animator class contains an instance of each of the above classes, and is
responsible for switching one on and the other off at the appropriate times, and
storing the overall transformations matrices of each node. The RDC and KFC
classes also hold a set of transformation matrices, these are specific to their own
calculations and are expected to be combined as appropriate by Animator. Appendix
2 – UML Class Diagrams contains a high level class relationship.

The main user-interface to the library, for simple functionality2, are the methods,

void Animator::Update(float dt)

void Animator::StartAnimation(const char *name)

void Animator::StopAnimation(const char *name)

void RagdollController::RegisterForce(const aiNode *node, const aiVector3D
&force, float time)

The Animator's update method is responsible for advancing the state of the entire
animation library (including keyframe, ragdoll and IK) and is intended to be called
each frame with the time elapsed in seconds since the last frame.

1 But only superficially! The RDC and KFC classes contain their own data (and represent Objects in
a literal physical sense), whereas the IKS is a wrapper around the RDC to provide an interface
that acts on the underlying ragdoll skeleton. These are explored more in the coming chapters.

2 Inverse Kinematics functionality is not simple, and is detailed in its own section, 7.2.6 – Inverse
Kinematics

18

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

The RDC class is responsible for containing the necessary components for ragdoll
physics simulation. It provides an update method, which advances the simulation by
a given time-step. The Animator class is responsible for calling this in its own update
cycle. The IKS also works in the same way, with respect to updating.

The KFC class is memory-less between frames. It is responsible only for taking an
animation and time (or a set of animations and times), and calculating resultant
transformation matrices. Which animations should be played, and at what times in
their cycles, is determined by the Animator class.

Separation of the two main systems (ragdoll and keyframe) gives a robust software
design and allows the implementation, and behaviour, of one system to be
independent of the other, meaning that problems in one will not affect the other, and
the exact inner workings of one may be changed without disruption to the other. The
disadvantage this design brings is a redundancy in data (and calculation); for
example, there are no less than three places in which a full set of node-transform
matrices are stored. However, the superior software design is worth the increased
memory requirements.

Pseudo-code for the general work flow of the animation cycle follows:

Animator::Update(float dt)
{
 if (keyframe_active)
 {
 keyframe->NewFrame();
 for each animation in active_animations
 {
 keyframe->PlayAnimation(animation, time, weighting); // time is

specific to the animation
 keyframe->FinalizeFrame();
 }
 }
 if (ragdoll_active)
 ragdoll->Update(dt);
 if (ik_active)
 iksolver->Update(dt);
 CalculateOrientations();
}

Animator::CalculateOrientations()
{
 orientations.clear();
 for each node in model
 {
 orientations[node] = CombineData(
 ragdoll->GetOrientation(node),
 keyframe->GetOrienation(node)

);
 }
}

19

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

6 Keyframe System

As mentioned in the design overview, the keyframe functionality is split between the
KeyframeController and Animator class. The Animator class is intended to be slightly
'omniscient' compared to the KF class, and keeps an indexed database of known
animations (which are registered by the library caller, and are given in the form
provided by ASSIMP). The internal index used is simply an integer (size_t) which
uniquely describes the animation, but so as to avoid the caller needing to keep a
lookup table of which animations' ID is which, there also exists functionality to define
an animation by a text name (char*). For example, the caller can register an
animation under the name “walk” or “run” and refer to it by that name thereafter. All
related methods are overloaded to provide access by either index or name. The
caller can thus pass the current state of the character (i.e. “walking”, “running”, etc.)
as determined elsewhere in the program by an English word.

6.1 Keyframe Blending

Blending is an important part of an animation library as it provides a simple (but
limited) way to combine animation from different sources, with the possibility of
favouring one over another, to give a much richer library of animations available to
the application.

Blending is an effective technique for similar animations but for dissimilar ones it
quickly exhibits artefacts. Suitability of blending is not in any way considered by the
library and it is the caller's responsibility to make sure the character is not told to lie
down while running. The blend system works by taking the orientation quaternions,
the translation vectors and scaling vectors for each animation source, and averaging
each property (scaling, translation, rotation) before combining then. Vectors are easy
to average; for a set of n vectors, V and their (normalised) weighting factors, w, the
average is given by,

Quaternions are less simple as they are not a simple linear quantity, but repeatedly
applying an interpolation process can be used to give a weighted average (Figure 3)
of an arbitrary number of quaternions.

20

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Formally, given a set of n quaternions, q, with weightings, w, an average, Qn-1, can be
calculated by the recursive process,

or, less formally, the result of a blend between two quaternions is an interpolation
(this library uses spherical linear interpolation, or SLERP (Shoemake 1985) between
them both, with appropriate weighting factor. After the first two quaternions have
been blended, any further quaternions are blended in successively, using the output
of the previous blend as one part of the SLERP input, and the weighting factor is the
current weighting divided by the sum of the current and all previous weightings. The
result is a weighted average.

The end scaling, translation and rotation are then combined to form a transformation
matrix.

A problem with naive blending is that blends will often change the speed at which a
character appears to move. For example, in a blend between a running and shooting
animation, if the legs inherit 50% of the movement from the shooting animation (in

21

Figure 3: Averaging three elements (q1, q2, q3) using two iterations of an interpolation
process. Q1 represents an average between q1 and q2, Q2 then represents an
average between Q1 (i.e. q1 and q2) and q3. This example is not weighted, but
weightings would be worked into the process in the interpolation distance.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

which they are likely stationary), they will move at 50% of the speed of the running
animation. This will desynchronise the movement speed of the character from the
speed at which the legs move, thereby making its feet appear to slide.

To circumvent this the library allows weighting to occur on a node by node basis; so
the waist downwards may be weighted 1.0/0.0 in favour of the running animation,
and the waist upwards may be 0.0/1.0 in favour of the shooting animation (Figure 4).

22

Figure 4: A (headless) Doom3 model demonstrating blending; the first two
sequences show (random) frames from the shooting and running animation
respectively, and the final sequence shows the two blended together. The blend is
as described in the text; the upper half of the body strongly favours the shooting
animation while the lower half favours the running animation. The aggressive
variation in the leg of the runing animation can be seen to be present (in contrast to
the stationary pose of the shooting animation), but retaining the relative constant
direction in which the gun is pointed (in contrast to the running animation where the
gun's direction rotates through about 180 degrees (compare running frame 2-4).

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

The library also provides a pair of methods,

void Animator::Transition(size_t from,
size_t to,
float time = 1.0f)

void Animator::Transition(const char *from,
const char *to,
float time = 1.0f)

to transition between two animations over a given time period. When this method is
invoked the library applies a blend factor to both the 'from' and 'to' animations, and
over the given time period linearly changes the blend factors from 1.0/0.0 to 0.0/1.0.
This could be used to give a smoother transition between a run and walk, or a
movement to an idle animation (or vice versa).

The Animator class also provides time scaling functionality, as the entire library
expects to treat times as being seconds seconds, but an animation might have its
time indexes encoded differently (for example, Tiny.x was found to use milliseconds
and Doom3's animations used tenths of seconds), and the Animator needs to be
able to scale accordingly. Similarly, individual animations can be time-scaled, which
has limited usefulness1 but a scaling factor of -1 would make the animation run
backwards which may in some situations be useful.

Another feature provided by the library is the ability to prevent the model from
translating from its initial position as a result of the animation. In some animation files
(exhibited by those in Doom3), the character often translates from its initial position
in a walk or run animation. This might work within some animation libraries, but here,
it presents a problem if one wishes to blend animations whose models are in
different locations in space. This works simply by fixing the translation property of the
root node (or optionally, some other node). This is set via a public member attribute
of KeyframeController.

For performance and consistency the Keyframe library includes the possibility of
setting a minimum time-step (i.e. it will update a maximum of so many times per
second – this defaults to 40 per second). Setting this too low loses a smooth
appearance, but allowing it to run unrestrained may use a lot of CPU time better
spent elsewhere in redundantly animating the model more minutely than the human
eye can appreciate.

1 Animations from different sources might have different time scales, but one would not expect
animations from different sources to have been created for a single model.

23

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

7 Ragdoll System

The ragdoll system was a large source of challenges throughout this project. Two
approaches were pursued over the course of the project as it slowly became evident
that the first approach was inadequate. The second approach was an augmentation
to address the failings of the first method, so the first method is discussed here.

It is ambiguous in this section whether the words “skeleton” and “model” refer to a
rigged model exported from an animation package, or to the internal ragdoll
structure. To clarify, model is used only for something that would be created in an
3D-modelling/animation package, and a skeleton always refers to the dynamically
created ragdoll skeleton that exists only at the library/program's run time.

7.1 Approach 1

Ragdoll systems are often modelled as articulated rigid body using spring constraints
between them; this ragdoll system instead uses a particle system (Jakobson 2001),
which is similar in the way forces are modelled but diverges slightly in the structure
of the skeleton. The skeleton is a set of linked particles with constraints holding each
particle a set distance from at least one other particle, like a stiff-spring. All particles
are in world space and the particle system has no need for the concept of local
space.

The advantages of this over an articulated rigid body approach are that it is a lot
simpler to understand and implement, rotations appear completely implicitly (figure
5), and due to the simple nature of the arithmetic needed on each particle (purely
vector addition), it is very fast to process computationally.

The disadvantage lies in the simplicity; the lack of explicit rotations means that
rotational data (for the purposes of building the overall model's transformations)
needs to be derived from the skeleton or its movements.

24

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

7.1.1 Initial Creation Of Skeleton

Initially, the skeleton has to be constructed from the input model. This is done by
wrapping boxes (which double as hit-boxes) around each nodes' vertices. Originally
it was tried using the middle-points of the top and bottom planes of the box to create
a pair of particles (or a line, defined between the particles) which acted as the node.
This lead to joints between particles being of non-zero length. This is unacceptable
as it leads to artefacts: for example, two particles a = (0,0) and b = (10, 0) have a
separation distance of 10 along the X axis. Suppose these particles represent a joint
in the skeleton (a connection between two nodes). Suppose the particles are then
altered, such that a = (0, 0) and b = (0, 10). Both pairs have a separation distance of
10, but in the case of the first pair the separation is along the X axis and in the case
of the second, it is along the Y axis. Whilst a distance constraint1 specifying a
separation distance of 10 would satisfy both pairs of particles, a transformation from

1 The skeleton is held together by distance constraints (a scalar, specifying the required distance
between two particles). These are explained in greater detail later, in 7.1.3 - Distance Constraints

25

Figure 5: a simple particle system and its behaviour as a force is applied to the
end node; the first particle is fixed at the origin, and an upward force is applied to
the end-most particle resulting in the rest of the particles being pulled up behind
it. This acts much like a metal chain, using a higher number of particles one
could model a string or rope. The particle system is surprisingly versatile, it could
potentially be extended to model cloth by building a lattice of particles, and
complex structures of particles could potentially model deformable 3 dimensional
bodies.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

the first pair to the second pair would give the joint a stretch of 10 units along the Y
axis, and a squash of 10 units along the X axis.

To make the system consider constraints as direction as well as distance (i.e. a
vector) would involve a more difficult (and fragile) implementation than altering the
node structure so that particles forming a joint are always a zero length from each
other. This was achieved by 'stretching' the node definition such that each node's top
most particle (parent-connector) is set equal to the parent node's bottom most
particle (child-connector).

26

Figure 6: The model, and resultant hit-boxes, and ragdoll skeleton
for Tiny.x

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

7.1.2 Forces

Forces are registered with the skeleton, and bound to a node. Each node keeps a list
of the forces acting upon it, and this list is iterated over at each step in the
simulation, and its effect calculated. Forces are given a time for which they are
active; impacts rarely exert their full force as a one off instantaneous effect but
instead as a short push and the library attempts to model such an effect accurately.

A force is modelled in the physical, Newtonian sense of a force, and the visual effect
it has upon the particle is a change in position. Newton's second law of motion leads
to a relationship between force and displacement, resulting in a chain of differential
equations:

Using the symbol set: force F, mass m, acceleration a, velocity v, displacement x,
time t.

As a result of the animation library's design, the ragdoll system expects to be called
in discrete time-steps, which is congruous with numerical methods for simulating
models expressed as differential equations. The most obvious way to solve these
equations is to simply calculate the acceleration from the force, then to multiply this
by the change in time since the last time-step, add this product to a velocity
accumulator, and so forth; this is called the Euler Forward Method1 for integration,
which has the general recursive formula:

Euler integration is often unpopular within game development communities because
although it is very fast it is seen as not particularly accurate or stable . This is not
necessarily a correct assumption (Weisstein 2009 “Euler Forward Method”), but with
respect to accuracy and stability, there do exist more preferable methods.

Within molecular dynamics two such methods, Verlet integration and Beeman's
algorithm, are commonly used because they are quite accurate, stable and fast to
compute. This project implements a variation of Verlet integration, common within
computer games, known as Velocity-Verlet integration. This is a slight upgrade on
the Verlet method as (contrary to standard Verlet) it explicitly considers velocity. Its

1 Also: The Forward Euler Method, and Euler's Forward Method, and simply Euler Integration

27

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

derivation is not as simple as the Euler method and is omitted here, but its formula
and thus implementation is still relatively simple:

As can be seen, the two formulas separately calculate x (displacement) and v
(velocity). Within both, acceleration is misleadingly referred to as a function of time.
For the purposes of implementation, acceleration is calculated from the resultant
force acting on the node at that time-step, using Newton's second law.

7.1.3 Distance Constraints

Enforcing distance constraints between particles is very simple: if the distance
between the two particles being evaluated is different to what it should be, both
particles are moved either closer together or further apart as necessary. Suppose the
particles represent a line, the line before and the line after (applying a constraint) are
parallel. The following (adapted from Jakobson (2001)) describes an algorithm to
apply a constraint between two particles (p0 and p1). The algorithm takes a pair of
particles, denoted by n, and calculates a corresponding pair, denoted by n+1, that
satisfies the constraints. The pair denoted by the subscript 0 are the particles' initial
positions, and are assumed to define the constraint between them.

The growth/shrinking effect is equal at each end of the line. Consequently, solving
one constraint will dislocate both particles, and therefore break other constraints.
This is expected, and the constraints are applied to one node after another, then
repeated several times; each successive iteration will result in each constraint, on
average, becoming closer to being satisfied.

28

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Small errors will be unnoticeable to a human observer; furthermore any particular
constraint left unsolved at the end of a frame will (probably) not remain unsolved for
more than a small number of frames. For optimisation an acceptable error threshold
was set, and during testing a threshold of ±2% gave no visibly wrong results.

7.1.4 Results And Discussion

The results of this approach were initially promising, but as development progressed
the approach was showing itself to be unsuitable to be further developed into a full
ragdoll system. As well as the areas already listed in this chapter, a collision
detection system was half-implemented before the approach was accepted to be
inadequate.

On the positive side, the particle system reacted very well in dragging its constituent
parts around and for small effects the results were not unconvincing (Figure 7).

For larger effects however the results certainly were unconvincing as the body
essentially came 'undone' in that it lost its resemblance to a believable human
skeleton. The reasons for this fall into quirks in the hierarchical layout of the models,
and problems in synchronising the model with the ragdoll skeleton.

29

Figure 7: The effect of a small push on the head node. Careful
observation will show that the upper body's boxes have been pulled
slightly from their original position as a result.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

7.1.4.1 Model Quirks

During implementation it was found that models were often not arranged in
completely intuitive, or logical, ways. Construction of the skeleton for Tiny resulted in
a false 'spine' (for lack of a better word) appearing, which was a result of parts
(vertices) of her hair being logically a part of her 'pelvis' node; the vertices' bounding
hit-box and thus the start and end points (particles) of the skeleton node were in an
unnatural, nonsensical position. Figure 8 shows how the unnaturally structured
skeleton effectively comes apart when it is manipulated freely; although the skeleton
has preserved a roughly human shape, the false 'spine' has not been moved in a
natural way. Appendix 4 – Ragdoll Approach 1 Further Resultscontains a screenshot
showing the effect of a much bigger force, showing that the skeleton begins to lose
its resemblance to a human body as the ragdoll is allowed to handle bigger effects.

To (attempt to) circumvent this the system provided the ability to register artificial
distance constraints between arbitrary points but these proved insufficient;
analogously to the problem detailed earlier (in 7.1.3 – Distance Constraints) of
distance constraints of non-touching particles, the resultant behaviour was
unconvincing and often resulted in a 'popping' effect where the spine would 'pop'
from behind to in front of the skeleton. This effect was exhibited with a constraint
between the neck node and the and the top of the 'spine'. If time had been spent
defining a complex lattice of such constraints all across the body, it might have been
possible to make the skeleton more rigid and less prone to unraveling, but it is a

30

Figure 8: Result of a strong force applied to Tiny's head. The final pane shows the
hit-boxes for the same skeleton orientation as the second pane. The skeleton's
resemblance to a human being has begun to fail.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

fragile solution and it is possible the increased dependency between particles might
have made the popping effect more frequent.

Relating to the model structure is collision detection: the 'spine' is inherently inside all
the body nodes and therefore colliding with them. Furthermore, as can be seen in
the screenshots, the sheer number of nodes makes a lot of collisions very likely to
occur after very small movements. To recognise these as actual collisions would give
unrealistic results, so the ability to exclude some nodes from colliding with each
other was implemented. However, this was not without a cost: the retrieval of node
data in general was a performance bottleneck1, and when the system began looking
up which nodes may collide with each other, the bottleneck became a problem and
the overall process greatly increased computation time to unacceptable levels.

7.1.4.2 Synchronisation of the model and skeleton

It was known when choosing this approach that the particle system did not provide
an easy way to derive node orientations. To calculate them, when performing a
translation of a particle, the system observed the 'before' and 'after' vectors between
the particles. These two vectors were normalised to u and v, and the change in
orientation was calculated as being an axis-angle pair, θ and A,

However, in using this, the implementation failed to keep the model and skeleton
synchronised. The resultant rotations on the model did reflect the rough rotation of
the ragdoll (evidenced by the hit-boxes shown in the screenshots throughout this
section: they are oriented using the data this process derives.), they accumulated
'error' quickly such that anything but very small movement noticeably diverged the
model from the ragdoll skeleton. The implementation was checked carefully, so it
seems likely that either some part of the method was overlooked, or that because
the orientation changes were very small for any individual change, floating point and
rounding errors caused rapid accumulation of error. The ASSIMP library provides a
method,

aiMatrix4x4 &
FromToMatrix(const&aiVector3D&, const aiVector3D&, aiMatrix4x4 &)

which creates a rotation matrix that transforms one vector into another through an
algorithm described by Hughes (1999). This was also tried on the normalised 'before'
and 'after' vectors, but was no more effective.

1 Not speculation: this was found as a resulting of profiling using gprof.

31

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

A correction to, or suitable replacement of, the method was not found.

Brown (2009) posits that deriving orientation directly (without using such fragile
methods) is possible given some assumption that the model's rigged layout has
some geometric properties, but for any arbitrary model this assumption cannot be
made.

Similarly, the fact that the particle system could not represent a rotational degree of
freedom of a node about its own axis was a problem that was never solved, and this
resulted in arbitrary and uncontrollable rotations about this axis (visible by careful
observation of the screenshots in this section); no method was found for cancelling
out this rotation.

7.1.4.3 Performance

Performance was a problem towards the end of implementation. Although
manipulation of the skeleton is relatively easy, the sheer number of nodes greatly
increased the CPU time necessary to evaluate the skeleton. This was especially
problematic with regard to self collision detection. A number of optimisations were
employed to deal with this, the first concerns the data structures in which the ragdoll
skeleton is stored, and is detailed below (in chapter 8). The second was to simply set
the ragdoll system to use a fixed time-step, which means that the ragdoll system is
not evaluated at every frame (an update frequency of 40 times per second is the
default value in the library). These two alterations made a significant difference and
are universally applicable to any ragdoll model.

7.1.5 Conclusions of Approach 1

The results highlight two important lessons:

1. The 1-dimensional particle system is inadequate for a general approach
because it cannot, in a general sense, be relied upon to provide a method for
deriving rotational information from the particle system.

2. A complex skeleton is not well suited to being pulled around like a ragdoll for
reasons of both realism and performance. Performance can be optimised,
likely to within acceptable levels, but to try to patch it to produce more natural
looking behaviour is a difficult problem.

The first lesson can be worked around by changing the skeleton system, but the
second presents a barrier when trying to find a general approach to ragdoll physics.
The best way to approach the problem is to remove it: a ragdoll does not need the
(for example) 47 nodes that Tiny.x defines. Retargeting animation data between

32

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

skeletons is an established area of computer animation and the overall idea is
applicable here. By retargeting the complex model to a much simpler ragdoll, the
effects of ragdoll physics could be applied to the complex model while avoiding most
of the model's complexities and quirks.

This is explored further in the remainder of the project.

7.2 Approach 2

After finding failure in the first system and evaluating why those failures came about,
a different approach became evident. Coinciding with the acceptance of the first
system's inadequacy, the discovery of Rosen's (2007) paper was made, which
makes similar observations about a 1-dimensional particle system as well as
presenting similar ideas on how the problems could be fixed. At this point roughly 8
weeks remained of the project and this was felt to be long enough to build another
system, but several short-cuts were taken. These are mentioned where relevant in
the following chapter.

The second system is an augmentation of the first and builds on its shortcomings.
The first addition was to represent nodes as two-dimensional shapes instead of
lines. A 3D approach could have been employed, but the added complexity of doing
so was a deterrent: this would have meant increased CPU load, increased difficulty
of implementation, and more difficulty in deciding on node-to-node connection points.
A 2- (or 3-) dimensional approach allows rotational information to be derived from the
skeleton. The second major change is that the skeleton is no longer built directly
from the input model. The exact sizes of the nodes are dynamically determined from
the input model, but its architecture is static containing only upper/lower body, upper/
lower arms, upper/lower legs and a head; it is intended to represent a biped but
there is no reason a similar quadruped such as a dog could not be modelled with the
same set of nodes. Any other nodes are regarded as superfluous for a ragdoll
simulation, and by keeping the skeleton simple, the risk of unnatural behaviour is
reduced because there are fewer ways in which it can occur. The input model is
retargeted to this fixed skeleton, the simulation is run on the fixed skeleton, and at
each time-step the transformation data of the skeleton is retargeted back to the
model.

From a software point of view, the existing Ragdoll class now acts as an interface to
a new class RagdollSkeleton. It is a container and handles miscellaneous node data
that doesn't logically belong in the skeleton, and more importantly, it is responsible
for performing the retargeting process. Within RagdollSkeleton objects are a set of
RagdollSkeletonNodes objects. The original RagdollNode is still used to hold some
data, the reason for this is that completely rewriting the architecture from scratch
would have taken too much time.

33

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

7.2.1 Derivation Of Orientation

Using two- instead of one-dimensional shapes to represent a node results in its
orientation being derivable. Rosen (2007) partly outlines the steps to do this, but
provides no argument towards its correctness, which is not immediately obvious. The
process, for a shape with three points, (p0, p1, p2), is:

From this three axes are derived; the first is the line between two points on the
shape. A temporary second is constructed by taking a different line between between
two points. A real second is calculated by the cross product of those two (giving a
line which is orthogonal to axis1), and then a third is calculated by the cross product
of those (giving a line that is orthogonal to both previous axes).

The resulting normalised vectors form an orthonormal basis that describes a rotation
from the standard basis, {ex, ey, ez} to a co-ordinate system defined by the node
orientation. These are put into the columns of a 3x3 matrix to give a rotation matrix
that represents the node's orientation (although the system actually uses this as an
intermediate step to calculating an equivalent quaternion).

The absolute orientation of a node is not of particular interest, only the orientation
that transforms the node from its initial position (at the time the ragdoll was invoked)
to its current position. This value represents the rotational transformation that the
node has undergone since the start of the simulation. This value can then be sent
back into the rest of the animation system as it will specify the transformation that the
model node should undergo.

34

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

This is equivalent to solving:

As quaternion multiplication is associative1, by inspection,

All rotations are unit quaternions, and a unit quaternion's inverse is equal to its
conjugate (i.e. negation of the signs of the imaginary units' coefficients)

7.2.2 Nodes

A node in the skeleton is represented as either a 3 or 4 sided polygon. The different
numbers of points are implemented as separate classes as they sometimes behave
slightly differently but both are derived from the abstract class RagdollSkeletonNode
and make use of polymorphism.

As in the first approach, the node itself is responsible for providing functionality to
know which forces have been applied to it and to react to the forces. The node is
also responsible for calculating its own orientation data (see 7.2.1).

The shape of each node is enforced at each time-step by distance constraints (as in
7.1.3 – Distance Constraints) defined between each point.

Node to node connections are implemented differently2; nodes store pointers to
vectors (particles) and therefore two nodes may literally share a particle (by storing
pointers to the same location). Joints are therefore enforced implicitly, reducing
computation time.

Having the possibility of two particles per joint means that there can be formed
'hinge' joints. These are particularly useful at the elbows and knees of biped
character models. The distance constraints implicitly dictate that the knee/elbow may
only rotate through the axis represented by the hinge. Further, from a quaternion can
easily be determined an axis-angle rotation, so in the case of the lower-leg/forearm
the angle can easily be used in a comparison to enforce that elbows and knees
cannot rotate to unnatural extremes. It is more difficult to enforce angular constraints
on ball joints as quaternions do not provide an intuitive basis for enforcing limits on
rotation, and converting from quaternions to Euler angles is not an easy process as

1 The Ragdoll system uses mostly quaternions but associative multiplication is also a property of
matrices. i.e. ABC = (AB)C = A(BC).

2 In approach 1, a particle was only ever a member of one node (although two particles might share
the same spatial position) and joints were implemented as distance constraints between two
particles.

35

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

there exist some possible singularities in the conversion. As a result angular
constraints on ball joints were not addressed in this project.

The library implements some constraints on the angles; these are enforced by
rotating in the direction of nearest limit if the node is outside of the allowed limits. It
was found that soft-limits provided more pleasing behaviour than hard-limits. A hard-
limit simply limits orientation so that it cannot go past a certain limit. A soft-limit is one
that can go beyond its limit, but it will try to rotate back to the limit. The library allows
the user to set the soft-constraint factor (i.e. a speed of rotation) under the
preferences API.

7.2.3 Retargeting

One of the two major improvements of this second approach over the first is the
constant skeleton. The idea of the retargeting is to create an abstraction layer
between the input model and ragdoll skeleton so that the resultant skeletons are all
equivalent, thus avoiding many of the unique quirks of models that caused problems
in the first approach.

The whole process is conceptually quite simple but the implementation details are
less so and warrant their own explanation.

The retargeting process is divided into two parts, forwards retargeting
(retargeting/binding the model to the ragdoll), and backwards retargeting (using the
ragdoll to apply the appropriate transformations to the model).

36

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

7.2.3.1 Forwards Retargeting

The system must be able to retarget from the model skeleton to the ragdoll skeleton
and vice versa in an automated manner. The library trades off some automation in
favour of simplicity (a fully automated retargeting system is a pattern recognition/AI
problem and would be far beyond the scope of this project), and places some
responsibility upon the library's caller to provide the library with data on how the
retargeting should occur. An API is supplied which the caller should use to 'bind'
model nodes to skeleton nodes, and a further property is supplied for flexibility, as
explained in this section.
The rough approach the library uses to create a skeleton out of a model is to create
bounding boxes around the model's vertices, and to use the extrema in these boxes
as the vertices in the particle system. RagdollNode is a class which is leftover from
the first approach and contains boxes wrapping the limbs of the model, initially
intended to be hit-boxes, which is the data source used in the forward retargeting
process. The positions and dimensions of these boxes are employed to create a

37

Figure 9: Example construction of a skeleton from a model.
Whilst the skeleton's arms and legs each correspond to a
single model node, the skeleton's nodes in the head and torso
enclose several model nodes, thereby simplifying the
skeleton.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

skeleton. The resulting skeleton is made of a set of polygons which approximate the
input model, as shown in Figure 9.

The skeleton is made out of a set of 3 or 4 sided polygons. Each vertex of each
polygon is a 'particle' within the particle system, and in the implementation, the
adjacent polygons (as determined by the model's node-tree – a parent is adjacent to
its child) quite literally share particles (by having a pointer to the same location), thus
resulting in the bottom of the head's polygon starting from the top of the model's
shoulders rather than the model's neck. The excess space covered on the neck area
is obviously very large which might lead to unrealistic collision detection but this
tends not to be a problem because most impacts will be performed at a level much
higher than the ragdoll level: they are expected to be performed on the model (from
an application's perspective), then the library (ragdoll system) translates an impact
on a model node into an impact on the corresponding skeleton node.

Determining the correct vertex of the box to use as a skeleton node vertex is not a
trivial task, however. In Figure 9 the model is stood with its arms stretched out the
vertices can be determined by their position on the X and Y axis, but an input model
may conceivably be in any position. Even if one can assume that arms and legs
always point down the Y axis, the X and Z axes are still arbitrarily interchangeable.
Getting this wrong would result in the wrong vertices being chosen from the boxes,
and thus the skeleton being deformed: if the lower-body node had its top and bottom
points switched, due to the constraints holding the particles at the joints together, the
joint connecting the upper leg to lower body would occur at around the waist. There
is no obvious way to normalise the box such that its points are in predictable
positions.

The system could attempt to estimate which vertices are which using a comparison
between parent and child nodes: by taking the pair of points (one per box) which are
closest to each other the system might obtain the correct location for a ball-joint. By
adding in additional comparisons to sibling nodes (at least comparing left and right
legs, left and right arms), the system might also be able to obtain the points needed
for a hinge joint. But this method is both fragile and complex, and in future a model
with a slightly unusual layout might not conform to these assumptions. The alternate
approach is to force the programmer to specify the operations needed to transform
the box such that the vertices are where the library expects them to be. This
approach also is not ideal, because it places a burden upon the library's caller, but it
has the advantage of a less complex implementation and one that is reliable.

In fact, the best (from the view of the end user of the library) approach would be to
combine the two so that the library could estimate the correct skeleton, then allow
the programmer to alter anything that is incorrect, but there was not the time to
implement this. Thus, the 'rotation' of the box must be specified by the programmer.

The rotation is not literally a rotation: a box is a graph of 8 nodes, each connected to
three other nodes. A rotation would then be defined as a permutation of the tuple that

38

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

preserves the first-order relations in the graph. This mathematically rigorous
explanation however is not fully intuitive but is simply clarified with a diagram (figure
10).

In figure 10 there is only one axis about
which the box can be rotated, but in in
three dimensions, there are two. The API
(optionally) takes a list (std::vector) of
BoxRotation structs1 so that this rotation
can be performed before binding.

Determining the exact values required for
this is inconvenient, but it is likely that
each node for any given model would
need the same rotation, and the process
would only have to be performed once,
furthermore this is the only way by which
the library allows a truly generic binding
process that does not require alteration of
the animation library's source code for it
to be suitable for versatile use.

Bringing this together, the library's interface to this is a single method,

RagdollController::AddBinding(const char*,
const RagdollSkeletonNode *,
std::vector<BoxRotation>)

that the programmer should call to specify the model node's attachment to the
RagdollSkeleton. This should be done for each node in the skeleton. For any
skeleton node, the order in which model nodes are bound is important: the first and
last are used as the extrema from which the ragdoll's nodes' dimensions are derived.
The intermediate nodes are recorded (for the purposes of translating an impact on
the model to an impact on the ragdoll skeleton) but they have no geometric effect.

Each call to AddBinding() should be written within a single function, although the
application itself should never need to call it (this will be done by the library). A
pointer to this function is then given to the library. The prototype is defined as:

(void)(RagdollController *ragdoll)

1 struct BoxRotation holds a pair of members:
 int axis [0, 1]∈
 int amount: the number of rotations to perform (modulo 4, i.e. setting this to 4*a + b with a, b ∈ ℕ

is equivalent to setting it just to b)

39

Figure 10: Permutation of (p0, p1, p2, p3)
to (p1, p2, p3, p0). The result is a 'rotation'
of the node labels. It does not affect the
shape nor to which nodes each node is
connected, but it is intuitive to think of it as
being a clockwise rotation by 90 degrees.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

It is necessary for the library to hold a function pointer because the library creates
multiple skeletons for the purposes of blending ragdoll animation with animation from
pre-defined sources (explained in 7.2.5 – Ragdoll/Keyframe Blending), each of which
needs binding, so the library needs to be able to invoke the binding process on its
own.

A short sample of such an implementation might look like:

void Bind(Animator::RagdollController *ragdoll)
{
 std::vector<Animator::BoxRotation> v;
 BoxRotation b(0, 1), b1(1, 1);
 v.push_back(b);
 v.push_back(b1);

 ragdoll->AddBinding("Bip01_Spine", &ragdoll->skeleton->lower_body, v);
 ragdoll->AddBinding("Bip01_Spine1", &ragdoll->skeleton->lower_body, v);
 //etc
}

This would tell the library that the lower_body node is composed of the model's
nodes Bip01_Spine, and Bip01_Spine1, and before they are bound, they should both
be be rotated once in the first axis, and then once in the second axis.

This results in a considerable, but one-off inconvenience for the programmer, but it
provides a powerful interface to the library allowing skeletons to be created from
diverse models without having to tailor the library's source code.

Three examples of models and their generated skeletons are shown in Appendix 3 –
Model To Ragdoll Skeleton Retargeting Examples.

7.2.3.2 Backwards Retargeting

Backwards retargeting is the process of building the actual model from the results of
the ragdoll simulation. To do so, the model's global transformations are built
recursively from the root node using local transformations.

A node in the skeleton may potentially enclose several nodes in the model (as
explained in 7.2.3.1), so for any skeleton node. Each node in the ragdoll skeleton
has a set, {S}, of model nodes which are bound to it. Henceforth, the member of S
with the shortest distance (in the node hierarchy) from the model's root node will be
referred to as the 'top' node.

40

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

In general, for every skeleton node, only the top most node will need to consider the
skeleton node's orientation, as the child nodes will inherit this1.

At each time-step the ragdoll provides functionality to retrieve the 'change in rotation'
(section 7.2.1) and 'change in translation' since the ragdoll was engaged. Each node
in the model has a rotation and translation at the time the ragdoll was engaged (this
will usually be derived purely from the keyframe stream); an initial value. Thus, for a
'top' node, the local rotation (quaternion or matrix), R, is the original rotation to which
is then applied the ragdoll's change in rotation:

The translation property is slightly different. The root node's translation is inherited
from the ragdoll simulation (this will translate the model to the same point in the
world as the ragdoll skeleton), but for all other nodes it is hoped that the rotation is
sufficient2. This approach is used because deriving translation information perfectly
from the ragdoll skeleton is not trivial and is prone to small amounts of error (due to
the fact that some nodes, those with ball-joints, don't have a well defined axis of
rotation, so one cannot simply look at an arbitrary point on the rotation axis and take
the difference between its initial and current position as being a translation), which
would accumulate when applied down the node hierarchy. The local translation
(vector), T, is given as:

Scaling is not allowed at the ragdoll level and therefore is always set to its initial
value.

1 It is also possible in rare situations that two sibling nodes represent the 'top' level in which case
this system will not work; this is a strange situation that would probably never occur in sensible
usage so this has not been addressed.

2 The ragdoll rigidly enforces that its nodes may not become detached from one another, and
therefore the local position of a node is just a rotation from the end-point of its parent node.

41

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

7.2.4 Collision detection

7.2.4.1 Self Collision

The ragdoll system provides simple collision detection with itself. Each node has an
associated scalar which is equal to the greatest distance from the node's barycentre
to any of its points (referred to in the source code as a 'poking potential'). This is
used to determine whether nodes are in range of touching each other in order to
narrow the search space before checking for intersections between objects (Hennix
et all 2003). The nodes that are found to be in range are then checked by using each
vertex of one node as a ray which is tested for intersection with the other node using
ray/triangle intersection methods (Ericson 2005). This method is fast to execute and
provides the point of intersection; the collision response is to set the endpoint of the
vertex to the intersection point so it no longer intersects, but touches instead (and its
length is later enforced by constraints).

7.2.4.2 Environment Collision

The library itself does not provide collision detection with the environment. It is
assumed that in a full application the collision detection would be handled by a
dedicated subsystem, and it would be far more appropriate to handle this there than
to build a collision detection system into the animation library. Further, collision
detection is a considerable problem in its own right and there is simply not enough
time to implement it sufficiently well to be a universally adequate system.

Instead, the library expects collision detection to be implemented externally and a set
of function pointers should be given; the corresponding functions are expected to
provide various collision detection related functionality: Each ragdoll instance
expects to register (on creation) and unregister (on destruction) its nodes with the
collision detection system, and it also expects to be able to determine whether a
certain point is on the floor (or other gravity resistant surface).

The functions expected to be implemented are:

Register:
(void) (RagdollSkeletonNode*)

Unregister:
(void) (RagdollSkeletonNode*)

Determine whether a point is on the floor (the error argument is an 'acceptable
error'):
(bool) (aiVector3D *point, float error);

42

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

How the collision detection system is implemented internally is entirely irrelevant, but
it is expected that it will keep references to the nodes for as long as they exist. Thus
the library guarantees that no element inside a RagdollSkeletonNode will be
destroyed prior to the unregister function being called. However, after the unregister
function returns any access to those references will be unsafe.

A simple collision detection and response system is provided in the demonstration
program, but implementing one that fully provides realistic response was beyond the
scope of this project.

7.2.5 Ragdoll/Keyframe Blending

The most obvious solution to merging two sources of animation data is by simple
animation blending; where the data from the sources is essentially averaged
(described in section 6.1 – Keyframe Blending). Wrotek et all (2006) asserted this to
be insufficient and experimental results arising from implementing this during the
course of this project support their arguments: using this method introduces many
unrealistic artefacts for anything but very subtle changes between the two data
sources. Furthermore it means that after averaging the sources, the model's position
in space is likely not the same as the ragdoll skeleton's (weighting 50/50 between the
ragdoll and keyframe will yield a result translated exactly 50% of the way from the
keyframe's centre and the ragdoll's position), which means that collision detection
(on the RagdollSkeleton) will appear to react far too early.

Weighting on a node-by-node basis (described in 6.1 – Keyframe Blending) between
ragdoll and keyframe goes some way to address this but the body still distorts
(stretches at joints were noticeable) and overall this method of blending is simply
insufficient. The overall problem is that such operations are a blunt use of
mathematics, which do not effectively consider the 'human' context of the character's
skeleton.

A better way is to build at each time-step another, different ragdoll skeleton from the
combined data of the previous frame, and use that as a 'target': that is to say, to
have the ragdoll skeleton interpolate towards that skeleton. This is essentially what
the Dynamo system describes (Wrotek et al 2006) but it results in a much simpler
concept in this system because the interpolation is between vectors only; the
skeleton is given a 'target' skeleton and its particles simply need to interpolate
towards their corresponding targets.

The usual angular and length constraints are applied throughout so the skeleton
remains human looking, although whether its motion follows a realistic human
pattern is harder to enforce (and has not been addressed). The danger of unrealistic
motion paths is alleviated somewhat as typical paths between the model and its
target will always be quite short due to the fact that when the skeleton is a large
distance from its target it is likely unbalanced and in pure ragdoll mode (and

43

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

therefore not trying to interpolate to a target), but it does mean that once a character
falls, it will be unable to rise again realistically.

The interpolation is a relatively strong effect which directly counters the application of
forces to the skeleton. This must be considered, because it could result in the
skeleton being immovable with respect to impacts. In this system, a 'stun factor' is
introduced, represented as a real number [0,1]. This is a scaling factor on the∈
speed of interpolation; at 0 the model is fully stunned and makes no attempt to follow
its targets, and at 1 the skeleton interpolates towards its targets at some arbitrarily
chosen maximum speed. The library has to keep track of multiple stun effects so
they can stack up and so they can be treated individually (so that one stun effect
coming to an end doesn't automatically end all other effects), and therefore needs to
keep a list (whose elements are examined to calculate the overall stun factor).

7.2.6 Inverse Kinematics

Inverse kinematics (IK) is an area of animation borrowed from robotics. Suppose in a
sequence of linked nodes it is desired that an end-point (effector) of a node should
touch some defined point in space. Loosely, the role of an IK solver is to determine
the necessary positions and orientations of each node in the chain for that goal to be
achievable.

IK was not initially intended to be a part of this project as the library was complex
enough already, but the particle system skeleton naturally models a simple IK solver
and without a lot of work a layer was added on top of it to provide an API to IK-like
functionality.

IK is a problem that is not always best solved instantly because (in computer
simulation especially) the skeleton should iteratively approach the solution rather
than instantly assume it. Elias (2000) describes a visually intuitive approach to IK
involving pulling the limbs in an articulated chain towards a target. IK is a deep field
of research and much more robust methods are known than this, but Elias's method
fits perfectly into the existing ragdoll system. The IK method used is not an exact
replication of Elias's, but is visually similar: the motion is powered by a pulling force
solely on the effector, in the direction of the target relative to the effector's current
position.

For a position, P, and a target, T, the direction, D, is a unit vector calculated simply
by:

44

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

to which scaling coefficients (derived from the speed) are applied to calculate the
distance the effector moves on any given iteration. Moving the effector breaks the
distance constraints on the skeleton and therefore forces the attached nodes to be
pulled along. Therefore, whilst the effector's node is an active node with powered
movement, the nodes to which it is attached are 'passive' and being moved only as a
result of the skeleton constraints. This is not at all analogous to real human muscle
behaviour, but provides an effective illusion.

As well as active and passive nodes, there also exist inactive nodes. In the context
of the full ragdoll system, the effected nodes will also be attempting to interpolate
towards their keyframe (or bind) positions. To this end the IK system automatically
cancels the interpolation processing on the affected node, and allows the caller to
specify how far up the node hierarchy tree the effect reaches (so if an arm is
modelled by two nodes then calling it with '1' would make the upper and lower arm
movable, but the shoulder stiff as far as the IK solver is concerned).

The interface to the IK system works in a similar manner to the interface to the
keyframe animation system: the caller registers an IK target with a limb, and in return
receives an ID uniquely identifying the target, which may later be used to modify the
target.

IK itself is often only half the problem, however. As well as making a character reach
out and touch something, the successful execution of the action will generally mark
an 'event' the application is likely to wish to handle. Post-behaviour can be specified
in two ways to the library. The first is an optional callback function to be executed
when the IK target is reached (or the effector is as close to its target as possible); the
callback receives a pointer to the Animator object, the ID of the target, and whether it
has successfully reached its target1. This allows advanced behaviour to be specified
by the caller, for example the callback could trigger modification of the game
environment (e.g. moving an object), or it could invoke a reaction in another
character.

The second post-arrival behaviour method is simply a set of common instructions
(defined in the IKBehaviour enum) to tell the node after reaching its target (or getting
as close as possible), to:

1. Go limp (cancel the IK solver's effect)
2. Stick to that point (keep the IK solver fully active)
3. Retain the resultant orientation but make no attempt to stick to that absolute

point in space2

1 If this is 'false', it means the effector got as close as possible, but was restricted by something
(most likely the target was out of reach)

2 e.g. if an IK target made a character point forward, the character would still point ahead of
themselves when they turned around 180 degrees. Contrast this to option 2. where turning around
would make the character's arm also rotate to try to point behind themselves.

45

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

4. Forwarding to another target, i.e. cancel this target and activate another
target2

With the forwarding behaviour (defined in the IKBehaviour enum as
FORWARD_AT_TARGET) , paths and cycles can be registered. Using two points in
a cycle one can synthesise simple articulations such as a hand waving gesture. It
was found that repeated cycles looked quite mechanical; to alleviate this the IK
solver allows a randomness length to be set (the resulting target is then uniformly
distributed within the set of points less than or equal to that distance from the 'real'
target). Secondly, the speed at which the limb moves as a result of the IK solver can
be set to be modelled by a cubic (or lower order) polynomial over the domain [0, 1]
thereby (for example) allowing it to slow down at the end of its path. The variable and
its domain [0, 1] corresponds to the distance of the effector from its target over its
initial distance. Effects from other parts of the animation system might therefore pull
it beyond 1, which is allowed by the library for lack of any better solution – clipping it
to 1 could make it appear to warp as the polynomial effectively stretches. The library
does not make it possible to define a polynomial that is defined over [0,1] but
undefined anywhere outside of that domain, so this is a minor inconvenience rather
than a major problem.

An example on using the cycle functionality of the library is given in Appendix 7.3.

7.2.7 Other Considerations

Ragdoll 'jitter' is commonly a problem of ragdoll systems; i.e. the body does not
come to rest at the exact right time, and appears to continue shaking as it falls
through the floor and the collision detection system moves it back up. One obvious
way to try to determine when to switch off the gravitational effect on a body is to
determine how far it has moved since the last time-step. The problem with this
method is that it is quite arbitrary in deciding the cut off point and this could lead to
problems in having bodies stop moving unnaturally abruptly, or, in setting the
threshold too low and having the body shake for a noticeable time. Instead a more
physically accurate solution is employed: the “is a point on the ground?” collision
detection check is used to cease applying the effect of gravity. This is not perfect
either, because the effects of gravity remain in the differential equations for a number
of time-steps before a damping effect overcomes them and they disappear, but this
was not found to be noticeable.

2 This is equivalent to, but more convenient than, using a callback to set another IK target with the
same effector. However, the callback approach allows more advanced behaviour to be specified,
such as setting an IK target for a different node, or having a time-delay.

46

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

8 Miscellaneous Library Details

As well as the software structures outlined in the previous chapters, the library also
provides a Preferences API and a wrapper class to a hash table. The former
provides an extendible method to store arbitrary choices (many constants used in
calculations are quite arbitrary and/or are related to the scale of the model. Gravity is
the most obvious example of these) that can be accessed and altered by the calling
application at run-time if necessary.

The hash table wrapper (AnimHashTable) exists as a performance optimisation. By
default, C++ type, the std::map, is used frequently as it is often convenient to store a
node(name)-to-matrix (or other structure) lookup table. The map is usually
implemented as a self-balancing binary search tree, which has an average lookup
time of O(log n). On top of this, some models use a common prefix in front of their
nodes' names: for example Tiny.x uses “Bip01_”. In this case, a minimum of 7 wholly
unnecessary comparisons need to be made at each point in the tree.

 A 'real' hashtable provides more scalable lookups at O(1)1. Testing revealed that in
the scale of usage this library employs (i.e. about ~40-80 elements in a lookup table)
the lookups were approximately twice as fast using a hashtable. Standard C++ does
not (yet) provide a hashtable, although some compilers do. A simple wrapper
(AnimHashTable) is created which compiles using a hashtable if it is available, or an
std::map otherwise, thereby making the code standards compliant.

1 However, this does not provide the full story in itself: big-oh notation gives a relative computation
time to the size of its data; it measures computation speed with respect to growth rather than
absolute speed. While the the lookup time might be constant with respect to the number of
elements in the hashtable, the hashing function's speed is an additional overhead, and this is
dependent on the amount of data being hashed (i.e. the length of the key). It could have worked
out that the hashing time was longer than the average case lookup of the map. Although, in this
case, it did not, but it is an important consideration when comparing two algorithms using big-oh
notation.

47

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

9 Conclusions and Evaluation

This project has covered a number of areas which shall be analysed separately.
Each section discusses results, from which follows shortcomings and future work.
For clarity a single brief list of the (most important) areas of future work outlined in
each section is again listed in section 9.3 - Future Work as well as some
miscellaneous points that did not fit into any of the previous sections.

9.1 Discussion Of The Keyframe System

The library as presented handles keyframe animations acceptably, and the controller
and keyframe remain a well organised and extendible codebase. The keyframe
system provides a full animation library in its own right and could be used as such by
an application whether the application also required ragdoll physics or not.

Further work in the keyframing system would best be focussed on a more robust
blending system. For example, when fading from one animation to another the library
could attempt to time the blend such that the 'swap over' occurs in the period of time
in each of their animation cycles where the nodes' translational and rotational
differences from each other (i.e. from one animation to the other) is the smallest. A
similar idea could be employed in normal blending; to try to synchronise the
animations playing so that they appear to align with each other as best as possible.

9.2 Discussion of the Ragdoll System

9.2.1 Particle System

48

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

On the positive side, the 2D particle system was a vast improvement over the 1D
system and gives more flexible and believable human behaviour. Secondly,
retargeting to a standard skeleton also proved an effective solution to problems
encountered earlier in the project. It does not fix all problems; the issue that part of
Tiny.x's hair is attached to her pelvis (detailed in section whatever) still causes
artefacts, some of which are visible in the screenshots (Figure 11) throughout this
report. However, the library's inability to perfectly handle such illogical details has to
be accepted as a reasonable limitation.

In terms of ragdoll simulation, the results are very mixed. The system responds well
to explosions by sending the body flying in a believable fashion (Figure 12), and it
also works well for pushing bodies around (Figure 11), but fails to display such
believable behaviour for less extreme ragdoll effects like a character simply going
limp and falling (straight) down. The reasons for this are debatable: The overall
ragdoll system is a complex arrangement of a lot of different algorithms many of

49

Figure 11: Tiny being pushed gently until she falls backward

Figure 12: Tiny being sent flying from an explosion effect

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

which are intertwined. Within some there are a number of arbitrary choices (damping
coefficients on velocity/acceleration, relative effects of various constraints, etc), and
a lot of them have direct consequences on other parts of the ragdoll system.
Unfortunately this makes it difficult to discern whether more advanced behaviour is
an inherent limit of the straightforward particle system approach, or whether the
software just needs reorganising before the different parts can be tweaked
independently of each other.

The fact that the system does provide satisfactory behaviour when a model is sent
flying through the world, and that it handles small push effects very well, indicates
that there is potential within the method. Furthermore, the fact that it allows such
simplicity in the IK and keyframe/ragdoll blending areas, and that performance is so
high, mean that it is a very valuable approach to ragdoll physics, assuming that it
could be made to work better in other areas. Therefore, further work on this
approach to determine whether it could be improved in its handling of some effects
would make a very worthwhile area of investigation.

Any further work on this system, or in implementing the same functionality in another
system, would best be started with a restructuring of the ragdoll subsystem's
codebase. A basic proposition of such a layout is given in Figure 13, and had time
not become scarce towards the end of the project, the ragdoll system would have
been rewritten in this manner.

The idea of a particle system could also be generalised and separated from the idea
of a skeleton such that this animation library would be suitable for modelling other
particle animation effects, like cloth simulation.

50

Figure 13: A strong layout for a ragdoll system, focussing on separation of the
individual parts. RagdollContainer is the overall controller class, and provides most
of the external interface to the rest of the system.

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Another related improvement that would be worth investigating is better collision
detection and response. The first ragdoll method employed 3D hit-boxes. The
second method initially used only the two-dimensional skeleton for collision detection
and was intended to be expanded to make use of hit-boxes similar to those of the
first approach, but due to time constraints these were not implemented in full. More
accurate/realistic collision detection would definitely have a positive effect on the
overall quality of the simulation.

9.2.2 Inverse Kinematics

The particle system worked very well for a simple IK system, but is limited by the fact
the backwards retargeting has some error; the limbs (after they have been
backwards-retargeted) will always have the correct orientation but the translational
property of their position is sometimes a noticeable distance from the skeleton (the
right upper-arm in Figure 15, frames 5-7 show this). This is a problem when a
specific point needs to be touched precisely. However, it is not a problem specific to
the IK system, the IK system in itself provided very pleasing results.

The induced error could be tackled in two ways:

1. Currently, the translational part of all limbs when backwards retargeting is
ignored, except for that of the root node. It was hoped that rotation alone
would be sufficient; evidently it is not. Trying to factor in translation is not trivial
(hence it was ignored) because the ragdoll nodes do not always have a
defined axis of rotation, therefore making it difficult to take an arbitrary point

51

Figure 14: Tiny's walk cycle combined with IK to to form a hand-waving gesture

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

and compare its current versus initial translation; it might be that it was a
result of translation, rotation or some combination thereof.

2. Resetting the ragdoll skeleton to the model every few frames would make
sure that errors were zeroed often and the two skeletons stayed
synchronised. Synchronising incurs an overhead (of the forwards retargeting
process) but in light of the pleasing performance data (section whatever), this
would be the preferable solution.

IK is not a robust implementation and needs further work before it would be suitable
for “production” use; a triangle node with a ball joint has its a joint at its member 'p2',
while triangles with hinge joints have the joint at p0 and p1. Therefore, a hand or foot
is always at p2. The IK system assumes that p2 is the 'effector' point meaning that
upper arms and upper legs cannot (usefully) be assigned IK targets currently.

52

Figure 15: Two IK targets to make Tiny raise both hands while walking

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

9.2.3 Powered Ragdoll

As an algorithm, the powered ragdoll works very well for blending keyframe and
ragdoll motion. In practice, getting the 'right' weighting between the two sources, and
allowing the ragdoll to have a free effect for a short period before the keyframe was
invoked again proved quite fragile. A 'stun' time was used to try to model this; it gives
pleasing results but it is quite arbitrary.

53

Figure 16: Tiny being pushed backwards, then recovering (starting at frame 6) to her
bind pose

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

The implementation has shortcomings:

1. When the whole body is pushed, one would expect the character to re-
position its feet to try to retain its balance. This is non-trivial but would be a
useful area of future work and the existing IK API might provide most of the
needed functionality.

2. The lack of detail in the Ragdoll skeleton means that extremities are not
handled in the resulting animation and therefore the feet can appear to drag
while walking (although this effect is seemingly random in when it arises). This
could be fixed with a more detailed skeleton, but the library does not handle
definition of such skeletons in its current state; extending it to do so would be
a useful area of work.

As the method uses an abstraction layer to the skeleton and operates on equivalent
skeletons, this library could be extended to provide keyframed animation retargeting
using the powered ragdoll skeleton as an intermediary between two models.

9.3 Future Work

Many possible areas of future work were outlined in the previous sections. As well as
those already mentioned, there are two more of importance:

In terms of actual usability of the library, the ragdoll forwards retargeting process
(detailed in 7.2.3.1 - Forwards Retargeting) is a limitation and the library would
benefit from a more robust or automated approach. The retargeting system is
complicated for a programmer to actually use and the 'rotations' discussed can only
be determined by trial and error. A fully automated solution would be preferable but is
ultimately very difficult (and since the process is executed quite often one also has to
consider that more complicated analysis of the input model would increase CPU
load). In section 7.2.3.1 is given a sketch outline of an algorithm for 'guessing' the
appropriate skeleton. Implementing this with the possibility of a developer overriding
parts of the guesswork would provide a much more accessible solution.

The second implementation concern relates to the use of the Open Asset library.
ASSIMP certainly aids the project in that it provides a useful method for generic
importation of models and animation data, but the (animation) library's caller has not
been shielded from ASSIMP. Thus to use the (animation) library, a developer must
include ASSIMP header files, pass some data to the library in ASSIMP data
structures and link against the ASSIMP library. This is not necessarily an ideal
approach, and the library could feasibly wrap at least most (and probably all) of the
ASSIMP functionality/data types making them invisible from the external interface.

54

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

In summary, the most interesting areas for future work, in order of importance, are:

1) Refactoring of the ragdoll system's code to decrease interdependency on
component parts followed by more rigorous testing of those individual
components' shortcomings and then evaluation of whether they can be
extended.

2) Implementation of frequent re-synchronisation of ragdoll skeleton to keep the
model and ragdoll in better alignment during simulation.

3) Alteration of the IK implementation to be more robust (9.2.2).
4) An easier to use API to the retargeting process.
5) User definable ragdoll skeleton architecture (to allow modelling of characters

with unusual anatomies, or more detailed modelling of humans by addition of
hands/feet etc).

6) 3D hit-boxes for superior collision detection/response at the ragdoll level.
7) Improved balance response by repositioning of legs/feet.
8) Shielding of the developer from the requirement of also dealing with the Open

Asset Import library.

9.4 Satisfaction of Requirements

The overall deliverables for the project were a specification of a method, and an
implementation of that method in the form of an animation library, that could handle
ragdoll physics in a generic sense, and apply blending between keyframed and
ragdoll animation sources. They were divided into a number of points in 3 – Problem
Description and Requirements.

Requirement Status

Creation of method A method was created which allows a generic approach to
ragdoll using skeleton retargeting to abstract the ragdoll
skeleton. It is detailed throughout this report.

Creation of Library A library was created, and fully implements the method

Generality of
method/library

Some generality of the library was sacrificed (in having a
fixed skeleton), but overall generality appears high: The
set of models that were tested is small but diverse, and it
seems reasonable to extrapolate that (because the
skeletons are logically equivalent) the library can handle
any human-like biped and some quadrupeds (Appendix 3
– Model To Ragdoll Skeleton Retargeting Examples).

Automation The automation of the library is not as high as it could be,
due to the complex nature of the bind process (section
7.2.3.1). The process is usable, but has been marked as
an area of further work. The bind process is a one-off

55

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

consideration, in all other respects the library is very
automated and requires very little interaction with each
frame.

Keyframe system A keyframe system was implemented and works very well
(9.1 – Discussion Of The Keyframe System).

Ragdoll system A ragdoll system was implemented and works for some
effects but not well for others. It has been marked as an
area of future work (9.2 – Discussion of the Ragdoll
System).

Ragdoll/Keyframe
blending

The blending between keyframe and ragdoll data sources
works very well (9.2.3 – Powered Ragdoll).

Full library Interface The library implements all the functionality it was required
to (and more), and provides an interface to each part of it.
It should not be necessary for a user wishing to use these
functionalities to have to alter any modify of the source
code.

Portability Of Library The library's code is entirely standards compliant and
should compile on almost any platform for which there
exists a C++ compiler. The demonstration program (which
is entirely separate from the library, and whose portability
is less important) uses some POSIX extensions and
OpenGL. Both the library and demonstration program
have been compiled without problems on Linux/GCC4.3
and Windows/GCC3.4(Cygwin)1.

Documentation of
Library

The library's API is documented in full with Doxygen.
Sample code for basic operations is provided in Append 7
– Example Code Listings. Using the example code to
grasp how the library expects to be called and then using
the Doxygen documents to investigate what the example
code does not show should provide a perfectly adequate
way to learn to use the library.

Demonstration program A demonstration program was implemented to show the
library works.

All requirements are satisfied to some degree, most requirements are satisfied fully.
The requirements neglected to make any mention of performance because it is
difficult to quantify, and a working system was deemed more important than a fast

1 It was also compiled on Windows/MSVC using Visual Studio, but for some reason only ran within
the debugging mode. The program appeared to crash as soon as any code blocks using ASSIMP
structures were reached. Having never used Visual Studio/MSVC before, and therefore not
understanding its linking method (with .lib objects, opposed to .dll) this was not fixed, but is
probably trivial.

56

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

one. However, performance is nonetheless an important consideration, and is
discussed below (9.5 – Performance).

9.5 Performance

Numbers in this section were obtained by calculating the average length of time over
a second spent in the Animator's Update() method (this represents a full cycle). This
was recorded for each second over the course of a minute, and then averaged. All
numbers are in seconds, and were generated using an Athlon X2 6000+ (using only
one core, clocked at 3.0Ghz), compiled with GCC4.3 using -O3 optimisation.

Table 1 shows keyframe data, and Table 2 shows ragdoll data.

40 updates per second Update limit unrestrained

1 animation 3.87E-06 2.32E-04

2 animations 4.20E-06 3.93E-04

3 animations 4.71E-06 5.84E-04

4 animations 5.37E-06 8.16E-04

5 animations 6.11E-06 1.07E-03

Table 1: Average time/second spent in the animation library for keyframed animation,
blending 1-5 animations, using a restricted update limit of 40 updates/s versus no
update limit. The model used was a Doom3 model with 69 nodes.

40 updates per second Update limit unrestrained

Pure Ragdoll 7.02E-06 1.27E-03

Blended Ragdoll 1.35E-05 1.42E-03

Table 2: Average time/second spent in the ragdoll system during pure ragdoll
animation, and ragdoll animation blended with a single keyframe animation. The
model used was Tiny.x with 47 nodes.

Blending of keyframe animations (unsurprisingly) appears to give a linear
performance cost. It can be extrapolated that animating multiple models would also
stack linearly. In the worst case, 5 blended animations, the update cycle consumed
only a single millisecond per second of CPU time. Using the (reasonably set) update
limit, the CPU usage is negligible, in the order of microseconds per second. The
ragdoll is one order of magnitude slower, but its performance is still very high.

Memory usage was not evaluated thoroughly, but using Tiny.x (47 nodes), usage
increases at roughly ~2-3MB per Animator object (and associated ASSIMP scene

57

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

and importer), and a further ~1MB per animation being played. There is a further
~22MB overhead in using the animator and ASSIMP as shared libraries, which
appears constant. This is a very reasonable requirement for a desktop PC or modern
games console but the 22MB overhead is too expensive for a current generation
portable console, the Nintendo DS has only 4MB of RAM which is too unrealistic to
satisfy. However, upcoming portable consoles have more RAM (PSP GO: 64MB,
Pandora: 256MB (OpenPandora (2009)) and effort spent in reducing the overhead
memory usage1 would likely make the library suitable for use on these platforms.

9.6 Appropriateness of Methods

The overall methodology used worked very well. The strict research phase at the
start of the project was apt preparation for the bulk of the work, and allowed the
project to branch out into other areas of animation (i.e. skeletal retargeting) when the
need to do so arose. The fact this was possible was due to incorporating trial and
error and experimentation into the initial research phase, which allowed familiarity of
many concepts to be obtained quickly, as well as a good idea of what worked well
and was worth pursuing, and what did not.

The development methodology also worked well; the library itself is a substantial
piece of software, containing around 10,000 lines of code. Most of its features are
'complete' in the sense they work adequately well, but many are of alpha or beta
quality in that they would benefit from improvement ranging from more robust
methods, to extra safety/error checks (and of course, heavy testing). Regardless, in
the relatively short development time of around 6 to 7 weeks, the library is a success
in the sense that something so substantial was created in such a short time scale.
The methodology of prototyping is largely responsible for the rapid development.
However, prototyping was not without its problems; it was anticipated that such an
approach would lead to unmaintainable code if due care was not taken. In the
Animator container class, the keyframe class and IK class this was avoided entirely.
The ragdoll system, however, is the opposite and has been discussed, and certainly
did suffer from the fast development, and the second system would benefit from a
stronger design.

Two to three weeks were 'lost' in the sense that they were spent pursuing the first
ragdoll approach which ended being discarded due to it being inadequate. This is a
difficult situation to evaluate because on one side, had the research phase been
stricter, Rosen's (2007) paper may have been found (or the equivalent information),
which outlined everything that the two to three weeks development in the first
approach revealed, and therefore the project would likely have begun by
implementing the second system. On the other hand, the practical experience of

1 As well as alterations to this library, reducing memory usage might involve modification to
ASSIMP. This is allowed and perfectly legal under their BSD license. A plugin based importer
system where different importers were only loaded at runtime if there was a need for them would
lower ASSIMP's memory requirements, for example.

58

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

implementing the first system was valuable and much of it translated directly to the
second system, making the second system's development quite easy. Clearly,
another attempt at the same project would not include the first approach and in fact
would likely extend the second approach into a 3D dimensional system, whereby the
limbs would be modelled purely by boxes instead of triangles/quadrilaterals.
Therefore the ragdoll skeleton would give a full representation of the model with
respect to collision detection. The work in such a project would also have to consider
implementing realistic joints between boxes, and creating a suitable forwards-
retargeting process (which, again, would not be trivial).

Overall, the results obtained are pleasing especially considering the short time
frame, and the methods used were very appropriate to the type of research and
development that was undertaken over the course of this project.

59

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

10 References

Adams, Jim (2003), Advanced Animation With DirectX, Premier Press Game
Development

assimp.sourceforge.net (2009), Open Asset Import Library [online],
URL: http://assimp.sourceforge.net [5th July 2009]

Blow, Jonathan (2004), Understanding SLERP, Then Not Using It [online],
URL: http://number-none.com/product/Understanding%20Slerp,%20Then%20Not
%20Using%20It/index.html [27th June 2009]

Brown, Eric (2009), Ragdoll Physics On The DS [online],
URL: http://www.gamasutra.com/view/feature/3916/ragdoll_physics_on_the_ds.php
[2nd July 2009

Bruckschlegel, Thomas (2005) Microbenchmarking C++, C# and Java [online],
URL: http://www.ddj.com/cpp/184401976?pgno=1 [26th June 2009]

Elias, Hugo. (2000) Inverse Kinematics [online],
URL: http://freespace.virgin.net/hugo.elias/models/m_ik.htm [15th August 2009]

Ericson, Christer (2005) Real-Time Collision Detection (The Morgan Kaufmann
Series in Interactive 3D Technology), Morgan Kaufmann

Evangelista, Bruno (2008), Playing Nice Animations on XNA [online],
URL: http://www.ziggyware.com/readarticle.php?article_id=190 [27th July 2009]

Fjeld, Paul (2006) Gimbal Angles, Gimbal Lock, and a Fourth Gimbal for Christmas
[online],
URL: http://history.nasa.gov/alsj/gimbals.html [11th September 2009]

flipcode.com (1998), The Character Animation FAQ [online],
URL: http://www.flipcode.com/documents/charfaq.html [21st June 2009]

Hahn, James (1988), Realistic Animation of Rigid Bodies, CGraphics, Volume 22,
Number 4, August 1988

Hecker, Chris (1996) Physics parts 1-4 [online],
URL: http://chrishecker.com/Rigid_Body_Dynamics [2nd July 2009]

Hennix, M., Hugoson, P., Johansson, G., Lombardi, A., Miljevic, T., Nillson, A.,
Wassborn, M. (2003) Rag doll physics [online],
URL: http://staffwww.itn.liu.se/~gunjo/papers/ragdoll_physics.pdf [3rd July 2009]

60

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Hughes, John F. (1999) Efficiently Building a Matrix to Rotate One Vector to Another,
Journal Of Graphics Tools Archive, Volume 4, pp 1-4

IOInteractive (2002) Hitman 2: Silent Assassin, Eidos Interactive

Jakobson, Thomas (2001) Advanced Character Physics [online],
URL: http://teknikus.dk/tj/gdc2001.htm [26th June 2009]

Martin, Brian (1999) Quaternion Interpolation [online],
 URL: http://www.theory.org/software/qfa/writeup/node12.html [1st July 2009]

mono-project.com (2009) Mono; a cross platform, open source .NET framework
[online],
URL: http://www.mono-project.com/Main_Page [26th June 2009]

numpy.scipy.org (2009), NumPy; Scientific computing for Python [online],
URL: http://numpy.scipy.org/ [1st September 2009]

OpenPandora (2009): PANDORA portable gaming and mobile internet device
[online],
URL: http://openpandora.ca [5th September 2009]

Osier, Jeffrey (1993) GNU Gprof [online],
URL: http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html [13th September 2009]

Park, Jamie (2008), Motion Capture-driven Dynamic Simulation [online],
URL: http://dynamic-motion.weebly.com/uploads/8/7/1/3/871360/cs275_ai_paper.doc
[14th July 2009]

playstation2-linux.com (2009), Setting Up GCC As A Cross-compiler [online],
URL: http://ps2stuff.playstation2-linux.com/gcc_build.html [26th June 2009]

Rosen, David (2007) Starting Point for Physics-Based Character Animation [online],
URL: http://legacy.wolfire.com/rotationconstraintpaper/paper.html [29th July 2009]

Rotenberg, Steve (2005), CSE 169: Computer Animation, Chapter 2: Skeletons
[online],
URL: http://graphics.ucsd.edu/courses/cse169_w05/2-Skeleton.htm [21st June 2009]

Shoemake, Ken (1985), Animating Rotation With Quaternion Curves, International
Conference on Computer Graphics and Interactive Techniques, pp 245-254
[online],
URL: http://portal.acm.org/citation.cfm?doid=325334.325242

61

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Smith, Russ (2004), Constraints In Rigid Body Dynamics, Game Programming Gems
4, Charles River Media, pp241-256

Sommerville, Ian (2004) Software Engineering, Addison Wesley, 7th Edition

Tremethick, Piran (2006) Real Time Character Animation [online],
URL:
http://ncca.bournemouth.ac.uk/gallery/view/39/Real_Time_Character_Animation
[15th June 2009]

valgrind.org (2009) Valgrind [online],
URL: http://valgrind.org/ [13th September 2009]

Weisstein, Eric W. (2009) "Euler Forward Method."From MathWorld--A Wolfram Web
Resource [online],
URL: http://mathworld.wolfram.com/EulerForwardMethod.html [27th July 2009]

Weisstein, Eric W. (2009) "Quaternion." From MathWorld--A Wolfram Web Resource
[online],
URL: http://mathworld.wolfram.com/Quaternion.html [12th July 2009]

Wrotek, Pawel; Jenkins, Odest Chadwicke; McGuire, Morgan (2006) Dyanmo:
Dynamic, data-driven character control with adjustable balance, Proceedings of the
2006 ACM SIGGRAPH symposium on Videogames, pp 61-70

Zordan, Victor B.; Majkowska, Anna; Chiu, Bill, Fast, Mathew (2005) Dynamic
Response For Motion Capture Animation, ACM Transactions on Graphics (TOG),
Volume 24, pp 697-701

62

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 1 Software notes

All appropriate notes of the software can be found on the DVD under the root
directory. Documentation is provided in Doxygen format, and can be found in
docs/html/index.html.

63

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 2 UML Class Diagrams
Full class listings can be found in the documentation on the DVD. The diagrams
provided here are skeletal and represent an overall layout.

Appendix 2.1 Full Library

64

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 2.2 Ragdoll System Class Layout

65

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 2.3 IK System class layout

66

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 3 Model To Ragdoll Skeleton Retargeting
Examples

Three different models being retargeted to a standard skeleton. The skeleton shows
itself to be surprisingly versatile in that it can handle a dog as well as a human with
no changes to its node structure. The skeletons are a very simplified version of the
model, suitable for ragdoll simulation. Note the dwarf's axe to be unnecessary for
ragdoll simulation

Human:

67

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Dwarf:

Dog:

68

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 4 Ragdoll Approach 1 Further Results

These screenshots are analogous to those found in section 7.1.4.1- Model Quirks.
They show the behaviour of the first Ragdoll system when the body is subject to a
strong pushing force. It can be seen that the skeleton has almost lost its
resemblance to a human skeleton. It can also be seen that some of the boxes's
orientations (particularly noticeable from the legs downwards) have come out of
synchronisation with the skeleton.

69

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 5 Ragdoll Blending Examples

Tiny receiving while walking a push from behind, then recovering into her walk cycle.

70

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 6 IK Examples

71

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 7 Example Code Listings
A (mostly) full API documentation is provided within the library's source code with
Doxygen. An example interaction is given in the demonstration program but due to
its complexity from performing more functions than just being an example source
code listing (and the fact that it served as an experimental human interface to the
project, and has not been cleaned up) it is not always clear. For clarity, some brief
examples on calling the library are given here.

Appendix 7.1 Animator Object Creation

Before using the animation library a model needs to be imported by ASSIMP and
given to the library. We assume that there exists a model, and two animations, each
stored in separate files. For multiple animations per file the mAnimations should be
read past index 0. Error checking is omitted, see ASSIMP documentation for details.

#include “animator.h”

//ASSIMP includes
#include <assimp.hpp>
#include <aiPostProcess.h>
#include <aiScene.h>
#include <aiAnim.h>

Prefs::SetDefaults(); // set default library preferences. Alter these later
if needed, see prefs API

Assimp::Importer importer, importer2, importer3; //ASSIMP structures
const char *model_file = “/path/to/model.mdl”;
const char *anim1_file = “/path/to/animation.mdl”;
const char *anim2_file = “/path/to/animation2.mdl”;

// import models with ASSIMP
const Assimp::aiScene *mdl = importer.ReadFile(model_file, 0);
const Assimp::aiScene *a1 = importer.ReadFile(anim1_file, 0);
const Assimp::aiScene *a2 = importer.ReadFile(anim2_file, 0);

// Create animator.
Animator::Animator *animator = new Animator::Animator(mdl);

// Register animations with aliases.
animator->RegisterAnimation(a1->mAnimations[0], “walk”);
animator->RegisterAnimation(a2->mAnimations[0], “run”);

// register function pointers
animator->SetBindFunc(&bind); // see 7.2.3.1
anmator->SetCollisionRegisterFunc(&cd_register); // see 7.2.4.2
animator->SetCollisionUnregisterFunc(&cd_unregister); // see 7.2.4.2

72

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

animator->ragdoll->skeleton->SetCollisionPointIsOnGroundFunc(
&cd_point_on_ground_func
); // see 7.2.4.2

Appendix 7.2 Example frame-by-frame interaction

With a persistently accessible Animator* object can now be demonstrated usage of
the library's keyframed functionality on a frame-by-frame basis. We assume that
there exists a character object with an internal (movement) state whose state names
match animation names. In a 'real' application one would expect the character's
object's state change to trigger a call to the animator but that would be less easy to
demonstrate so tersely here so instead we assume existence of a function to tell us
what state changes the character has undergone this frame.

We also assume existence of a game clock.

Animator* animator; // we assume this has been correctly initialised
(see 7.1)

float last_frame_time = GameTime::GetTime();

void main_loop()
{
 float t = GameTime::GetTime();
 float dt = t – last_frame_time;
 last_frame_time = t;

 char *from, *to;
 //imaginary function to return a state change of a character
 character->GetStateChangeThisFrame(&from, &to);

 // there are four possibilities: we want to start an animation,
 // we want to stop an animation,
 // we want to transition from one to another,
 // or we just want to continue as we were.

 if (!from && to)
 animator->StartAnimation(to);
 else if (from && !to)
 animator->StopAnimation(from)
 else if (from && to)
 animator->Transition(from, to);

 //if neither to nor from, then no changes are necessary.

 animator->Update(dt);
 draw_character(animator);
}

73

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 7.3 IK Example Code listing

Example code showing how to set up a repeated chain of IK targets in a loop.

Assumes an Animator object pointer, animator, exists and is initialised.

bool repeat = true;
const char *nodename = “right_hand”;
aiVector3D ik_target = aiVector3D(-200, 150, 0);
aiVector3D ik_target2 = aiVector3D(-100, 150, 0);

float speed = 2.0f;

size_t t1 = animator->ik_solver->AddTarget(nodename,

ik_target,
Animator::FORWARD_AT_TARGET,
speed);

size_t t2 = animator->ik_solver->AddTarget(nodename,
ik_target2,
Animator::FORWARD_AT_TARGET,
speed);

animator->ik_solver->SetActive(t1, true);

size_t num_targets = 2;
size_t *list = (size_t*)malloc(sizeof(size_t) * num_targets); // it doesn't

matter whether this is malloced or new[]ed
list[0] = t1;
list[1] = t2;
animator->ik_solver->CreateChain(list, num_targets, repeat);
free(list);

74

Mark Watkinson – Real Time Character Animation: A Generic Approach To Ragdoll Physics

Appendix 8 Turnitin Report

75

	1 Introduction
	2 Literature Review, Previous Work, and Current Standards
	2.1 Character Animation Standards
	2.2 Pre-defined Animation
	2.3 Ragdoll Physics

	3 Problem Description and Requirements
	4 Approach
	4.1 Analysis of requirements
	4.2 Open Asset Import Library
	4.3 Project, Time Management, And Methodology

	5 Software Design
	6 Keyframe System
	6.1 Keyframe Blending

	7 Ragdoll System
	7.1 Approach 1
	7.1.1 Initial Creation Of Skeleton
	7.1.2 Forces
	7.1.3 Distance Constraints
	7.1.4 Results And Discussion
	7.1.4.1 Model Quirks
	7.1.4.2 Synchronisation of the model and skeleton
	7.1.4.3 Performance

	7.1.5 Conclusions of Approach 1

	7.2 Approach 2
	7.2.1 Derivation Of Orientation
	7.2.2 Nodes
	7.2.3 Retargeting
	7.2.3.1 Forwards Retargeting
	7.2.3.2 Backwards Retargeting

	7.2.4 Collision detection
	7.2.4.1 Self Collision
	7.2.4.2 Environment Collision

	7.2.5 Ragdoll/Keyframe Blending
	7.2.6 Inverse Kinematics
	7.2.7 Other Considerations

	8 Miscellaneous Library Details
	9 Conclusions and Evaluation
	9.1 Discussion Of The Keyframe System
	9.2 Discussion of the Ragdoll System
	9.2.1 Particle System
	9.2.2 Inverse Kinematics
	9.2.3 Powered Ragdoll

	9.3 Future Work
	9.4 Satisfaction of Requirements
	9.5 Performance
	9.6 Appropriateness of Methods

	10 References
	Appendix 1 Software notes
	Appendix 2 UML Class Diagrams
	Appendix 2.1 Full Library
	Appendix 2.2 Ragdoll System Class Layout
	Appendix 2.3 IK System class layout

	Appendix 3 Model To Ragdoll Skeleton Retargeting Examples
	Appendix 4 Ragdoll Approach 1 Further Results
	Appendix 5 Ragdoll Blending Examples
	Appendix 6 IK Examples
	Appendix 7 Example Code Listings
	Appendix 7.1 Animator Object Creation
	Appendix 7.2 Example frame-by-frame interaction
	Appendix 7.3 IK Example Code listing

	Appendix 8 Turnitin Report

